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Abstract

Affordable cloud computing technologies allow users to efficiently outsource, store, and man-

age their Personal Health Records (PHRs) and share with their caregivers or physicians.

With this exponential growth of the stored large scale clinical data and the growing need for

personalized care, researchers are keen on developing data mining methodologies to learn

efficient hidden patterns in such data. While studies have shown that those progresses can

significantly improve the performance of various healthcare applications for clinical decision

making and personalized medicine, the collected medical datasets are highly ambiguous and

noisy. Thus, it is essential to develop a better tool for disease progression and survival rate

predictions, where dataset needs to be cleaned before it is used for predictions and useful fea-

ture selection techniques need to be employed before prediction models can be constructed.

In addition, having predictions without explanations prevent medical personnel and pa-

tients from adopting such healthcare deep learning models. Thus, any prediction models

must come with some explanations. Finally, despite the efficiency of machine learning sys-

tems and their outstanding prediction performance, it is still a risk to reuse pre-trained

models since most machine learning modules that are contributed and maintained by third

parties lack proper checking to ensure that they are robust to various adversarial attacks.

We need to design mechanisms for detection such attacks. In this thesis, we focus on ad-

dressing all the above issues: (i) Privacy Preserving Disease Treatment & Complication

Prediction System (PDTCPS): A privacy-preserving disease treatment, complication pre-

diction scheme (PDTCPS) is proposed, which allows authorized users to conduct searches

for disease diagnosis, personalized treatments, and prediction of potential complications.

(ii) Incentivizing High Quality Crowdsourcing Data For Disease Prediction: A new incen-
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tive model with individual rationality and platform profitability features is developed to

encourage different hospitals to share high quality data so that better prediction models

can be constructed. We also explore how data cleaning and feature selection techniques

affect the performance of the prediction models. (iii) Explainable Deep Learning Based

Medical Diagnostic System: A deep learning based medical diagnosis system (DL-MDS) is

present which integrates heterogeneous medical data sources to produce better disease di-

agnosis with explanations for authorized users who submit their personalized health related

queries. (iv) Attacks on RNN based Healthcare Learning Systems and Their Detection &

Defense Mechanisms: Potential attacks on Recurrent Neural Network (RNN) based ML

systems are identified and low-cost detection & defense schemes are designed to prevent

such adversarial attacks. Finally, we conduct extensive experiments using both synthetic

and real-world datasets to validate the feasibility and practicality of our proposed systems.

2
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Chapter 1

Introduction

1.1 Motivation

In the past few years, cloud computing has emerged to be a useful enterprise IT solution,

where scalable and elastic storage and computational resources are provisioned for different

cloud services through the Internet. With such affordable services, more and more orga-

nizations, businesses and individuals have outsourced both their computational tasks and

large-scale data to the cloud. Unfortunately, such data may contain sensitive information

such as Personal Health Records (RHRs), business emails, etc, to cloud services [22]. In

order to enjoy monetary savings and simplify their local IT managements, they also out-

source computational tasks on their data to third-party service providers. Amazon Cloud

[9], Dropbox [10], Microsoft Azure Cloud, Google Cloud are some popular cloud platforms

utilized by many enterprises.

In addition, many healthcare providers and pharmaceutical companies also have in-

creased cloud-based eHealth solutions to manage health-related information and to auto-

mate administrative and clinical functions. For example, the Personal Health Record (PHR)

services [109, 102] allow a patient to create, manage, and control his/her personal health

data in a centralized place through the web, which has made the storage, retrieval, and shar-

ing of the medical information more efficient. Two major cloud platform providers, Google

and Microsoft are both providing PHR services, Google Health [11] and Microsoft Health-

Vault [14], respectively. The global healthcare systems are rapidly adopting Electronic
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Health Records (EHR), which are systematic collections of longitudinal patient health in-

formation (e.g., diagnosis, medication, lab tests, procedures, etc.). This will dramatically

increase the quantity of clinical data that are available electronically.

With the huge growth of the large scale clinical data collected by the healthcare service

providers and the growing need for personalized care, researchers are keen on developing

data mining methodologies to mine hidden patterns such that they can identify critical

factors which affect disease progressions, and use such information to aid the healthcare

professionals in making better treatment decisions. While studies have shown that those

progresses can significantly improve the performance of various healthcare applications,

learning efficient medical patterns of healthcare concepts, however, is still an open challenge.

Recently, deep learning techniques have been adopted in medical patterns and patient rep-

resentation learning. In [113], the authors develop a deep neural network composed of a

stack of denoising autoencoders to process Electronic Health Records (EHR) that captured

stable structures and important patterns in the data records.

Moreover, based on those clinical data mining techniques, cloud service providers may

also wish to offer genetic analysis or predictive services over the internet so that users can get

relevant medical answers based their submitted healthcare related questions. For example, a

patient may want to use a web service that stores and maintains all his/her medical records.

In addition, he/she may want to obtain prediction of whether or not he/she will suffer from

a specific disease. Therefore, data driven healthcare, defined as the usage of those available

big medical data to provide the best and most personalized care, is becoming to be one of

the major research trends that aim to revolutionize the healthcare industry [111].

1.2 Problems and Challenges

1.2.1 Privacy Leakage of Cloud Services

While cloud-assisted mHealth monitoring could offer a great opportunity to improve

the quality of healthcare services and potentially reduce healthcare costs, there are many

security and privacy concerns such as data confidentiality and privacy exposure which could
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impede making this technology a reality.

The main concern is about the privacy of patients’ sensitive Personal Health Information

(PHI) and who could gain access to the PHI when they are stored on a third-party server.

Patients lose physical control to their own personal health data when such data is placed

under the control of cloud service providers, which people may not fully trust.

Although the exist privacy laws such as HIPAA (Health Insurance Portability and Ac-

countability Act) [53] provide baseline protection for PHI, they are generally considered not

applicable or transferable to cloud computing environments [60] when the cloud providers

are not fully trusted worthy [61]. As a famous incident, a department of veterans affairs

database containing sensitive PHI of 26.5 million military veterans, including their social

security numbers and health problems was stolen by an employee who took the data home

without authorization [150]. On the other hand, due to the high value of the sensitive PHI,

the third-party storage servers are often the targets of various malicious behaviors which

may lead to exposure of the PHI. Thus, to ensure patient-centric privacy control over their

own PHI, it is essential to have privacy protection mechanisms that work with semi-trusted

servers. Traditional protection mechanisms of merely removing patients’ personal identity

information (such as names or SSN) or using anonymization technique are insufficient to

prevent information leakage.

In order to minimize the risk of data leakage to the cloud service providers, data owners

opt to encrypt their health records before outsourcing to the cloud. Basically, the PHR

owners themselves should decide how to encrypt so that only the legitimate data owners

can access the data by decrypting it using their private decryption keys. While encryption is

a commonly used method to preserve data confidentiality by storing ciphertext in the cloud,

it may prevent clients to utilize and compute their cloud data efficiently. For example, a

client using Wuala [19] has no way to operate meaningful search on its encrypted cloud

data, unless it first retrieves all the data from the cloud side and decrypts those ciphertexts.

This process is resource-consuming to a client, especially for medical data with large-scale

data size. Thus, this poses the question of how to facilitate effective search while minimally

revealing which contents the health service providers possess.

In order to solve this problem, various searchable encryption (SE) solutions (e.g., [44,
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57, 139, 32]) have been proposed recently to allow users to securely search over encrypted

data. However, most of the earlier proposed works [32, 41, 42, 86, 141, 173, 152] focus on

supporting simple search functions, such as single-keyword queries are too restrictive for

practical use. For example, they are not suitable for handling complex search operations,

such as multi-dimensional range queries. Thus, to enrich search functionality, several multi-

keyword search schemes that enable conjunctive or disjunctive search terms were proposed

[32, 36]. Unfortunately, most of them only allow exact keyword search instead of considering

typos in the users’ inputs. while some schemes that can handle typos have recently been

proposed [100, 107], they are either inefficient or do not handle query unlinkability.

In addition, it is hard to learn useful information or patterns from the encrypted data (i.e.

medical records) due to the cryptographic techniques and the search complexity increases

linearly with the number of stored data. Therefore, it is important to explore how one

can design a system that can support encrypted data analysis and efficient data retrieval

without compromising privacy and security.

1.2.2 Challenges of Collecting Large Medical Dataset and Mining Hidden

Patterns from such dataset

The ability to learn an accurate model for predicting patient outcomes typically hinges on

the amount of training data available. It is difficult to generate learning models that can

accurately predict rare or infrequent events. A single hospital may not have sufficient data

about rare health events and hence need other hospitals to share such data so that more

accurate prediction model can be created. In addition, unlike other data sources, medical

data is inherently noisy, irregularly sampled, and heterogeneous (i.e. data comes from

different sources such as lab tests, doctor’s notes, etc). Therefore, two important questions

naturally arises:

• how to gather a large collection of useful electronic clinical records, which can provide

an opportunity to study medical cases, evidences and knowledge.

• how can one employ learning methods, which can automatically extract useful patterns

to facilitate the advancement of clinical research informatics.

6



www.manaraa.com

Recently, with the fast development of hospital information systems, a large collection of

electronic clinical records become available, where research experts investigate approaches

to building predictive models that involves augmenting data from individual hospitals with

data from other hospitals. Clinical Data Mining (CDM) is the application of data mining

techniques using clinical data [80], which involves the conceptualization, extraction, analysis,

and interpretation of available clinical data for practical knowledge-building and clinical

decision-making [64]. The main objective of clinical data mining is to develop quantitative

models for patients that can be used to predict health status, as well as to assist the

healthcare professionals in decision making. While, applying data from multiple hospitals

presents an opportunity for making predictions in a target task, the data collected from

each hospital lack of quality verifications and may contain hospital-specific distinctions,

which in turn make it hard to extract important observations or features. For example,

a hospital may desire a highly accurate disease prediction model but unwilling to disclose

the details of all patient records and hence only provides data with missing or noisy values.

Thus, hospitals need to be encouraged to share high quality data such that healthcare data

mining researchers can access to huge amount of high quality patients’ data and produce

better models. Incentive mechanisms need to be designed to encourage hospitals to share

high quality data so that disease prediction models with higher accuracy can be produced.

In addition, instead of collecting data from multiple hospitals, previous works also tried

to link multiple data sources (e.g., medical website, medical blogs) to build joint knowledge

based dataset that could be used for predictive analysis and discovery [163, 48, 151]. While

the large availability of biomedical data offers great promise for accelerating clinical research,

there is a growing need in the healthcare scenario to develop data mining methodologies

to mine hidden patterns and discover new knowledge to provide more personalized disease

diagnosis or prediction models. For example, precision medicine attempts to ensure that the

right treatment is delivered to the right patient at the right time’ by taking into account

several aspects of patient’s data, including variability in molecular traits, environment,

Electronic Health Records (EHRs) and lifestyle [16, 110, 54].

While machine learning methods demonstrate great promises (e.g., [149, 115, 101, 103])

in clinical data analysis, sometimes, we need to use expert medical knowledge which un-
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fortunately is spread out across different medical websites. Using such distributed medical

information is challenging since such information is highly complex and heterogeneous in

natural. For example the same clinical phenotype can be expressed using different codes

and terminologies. A patient diagnosed with “type 2 diabetes” can be identified by labo-

ratory values of hemoglobin A1C greater than 7.0, presence of 250.00 ICD-9 code, “type 2

diabetes mellitus” mentioned in the free-text clinical notes, etc. Therefore, exploring the

associations among all the different pieces of information from those sizeable clinical data

[116, 132] is a fundamental problem that needs to be solved before one can develop reliable

medical tools based on data-driven approaches and machine learning techniques.

1.2.3 Challenges of Understanding Patients’ Queries

Based on those clinical data mining techniques and generated learning models, cloud

service providers may allow authorized patients to conduct searches for disease diagnosis,

medicine recommendations, etc. Thus, enabling computers to understand users’ queries

and answer questions about their contents has recently attracted intensive interest [131, 73,

74, 129, 119, 31].

In the healthcare domain, patient data collected by hospitals consists of multiple con-

cepts including discharge summaries, progress notes, etc, which contain rich latent relation-

ships that are difficult to be learned and represented. In order to overcome this limitation,

it is common in healthcare applications, to rely on carefully designed information extrac-

tion and feature representations [142, 65, 158]. The most common approach to extract the

semantic similarity of the data is to encode them with many lexical, syntactic and semantic

features and then compute various similarity measures between the obtained representa-

tions. Recently, it has been shown that the problem of semantic text matching can be

tackled using distributional word matching, where the questions could be matched with

candidate answers [167].

However, it is still a challenge to understand latent relationships and efficient represen-

tations of medical concepts in the health-oriented questions. In order to solve this problem,

many researchers and institutions have utilized deep learning methods to understand the
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representations of the complicated data, which can achieve good performance on multiple

prediction tasks. For example, Recurrent (RNN) or Convolutional Neural Network (CNN)

models have recently achieved significant performance gains and increasingly been used for

various NLP related tasks such as language modeling [30], sentiment analysis [138], syntactic

parsing [55], and machine translation [99]. In addition, these deep neural networks are also

able to effectively capture the compositional process of mapping the meaning of individual

words in a sentence to a continuous representation of the sentence. For example, it has been

recently shown that Convolutional Neural Networks (CNNs) are able to efficiently learn to

embed input sentences into low-dimensional vector space, preserving important syntactic

and semantic aspects of the input sentences, which leads to state-of-the-art results in many

NLP tasks [83, 88, 169]. While existing systems can discover efficient representations of

medical concepts, they have difficulty in dealing with patients’ questions especially for the

synonym scenarios since patients may use different medical terms in their questions even

when they have suffered from the same diseases. In addition, most systems lack explana-

tions for the prediction results which prevent medical personnel and patients from adopting

such learning models. Thus, a deep learning approach which can better understand users’

healthcare related queries needs to be designed to provide higher accuracy and more useful

explanations for the prediction results to these users.

1.2.4 Attacks & Defenses of Machine Learning Models

Despite the efficiency of machine learning systems and their outstanding prediction

performance, most machine learning modules that are contributed and maintained by third

parties, lack proper checking to ensure that they are robust to the adversarial attacks.

Recent studies have shown that many machine learning models are not robust at all when

someone wants to crack them on purpose [67, 146, 124, 123, 40, 170]. For example, intelligent

attackers can force many deep learning models to misclassify examples by adding small and

hardly visible modifications on a regular sample (i.e. make imperceptible modifications

to pixel values). This leads to security concerns, especially when applying deep neural

networks to safety related systems such as medical diagnosis, self-driving cars, etc.
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In addition, the attackers may also add some small perturbations to the weights in

the original models, which will make classifiers unable to classify correctly. For example,

the attackers can add random noise on the learning weights in a RNN system such that

there is a high chance that some important features will be treated as unnecessary in the

feature selection step, which ruins the robustness of learning-based classifiers. Such attacks

damage the capability of a RNN-based model to learn properties of the important long-term

dependent features for the classification task. Thus, in order to make deep neural networks

more robust to adversarial attacks, several defensive algorithms have been proposed recently

[78, 124, 171, 91, 164, 172]. Those defenses can be clustered into three different approaches:

(i) training the target classifier with adversarial examples, called adversarial training [146,

68]; (ii) modifying the training procedure of the classifier, e.g., defensive distillation [126];

and (iii) quantizing neural network weights and activation functions into low bit-width

[165, 161, 130]. However, recent studies showed that those defensive algorithms can only

marginally improve the accuracy under the adversarial attacks [39, 40]. Meanwhile, some

of the those defenses require adversarial examples to train the model and are devised with

specific attack models in mind, which are not effective against new attacks. Thus, more

research needs to be conducted to ensure the robustness of any deep learning models created

for healthcare purposes and it is also necessary to find better methods to defend against

the potential adversarial attacks.

1.3 Dissertation Statement and Contributions

As discussed previously, with the increasing availability of affordable cloud computing re-

sources and the availability of large healthcare related datasets, recent research has focused

on designing a robust healthcare system that can provide personalized care such as disease

diagnosis, survival rate prediction, medication recommendation, etc. Several important

issues such as security & privacy of healthcare data, availability of large heterogeneous

medical data, developing highly accurate and secure deep learning based disease diagnosis

and progress prediction models need to be explored before this vision can be realized. In

this thesis, we have made the following contributions to the above important issues that
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help to provide a more accurate personalized cloud-based healthcare system:

• In order to protect the information leakage, we design a privacy-preserving disease

treatment, complication prediction scheme (PDTCPS), which allows authorized users

to conduct searches for disease diagnosis, personalized treatments, and prediction

of potential complications of their illnesses. In particular, we design an encrypted

index tree which supports fuzzy keyword queries. Such tree-based structure is used

to provide search efficiency, which consists of three levels:

– Each top level node contains an encrypted category keyword that represents a

specific body part, e.g., bone & joints, kidneys, etc, and a Bloom filter which

contains all the disease keywords classified under this top level node, and their

associate fuzzy keyword sets.

– The 2nd level nodes store the relevant information, e.g., associated diseases clas-

sified under each top-level node. For example the related diseases “acute tubular

necrosis”, “kidney stones”, etc. will be stored in the 2nd level node under the

top level node that represents “kidney”.

– Each 2nd level node has three child nodes, one for diagnosis, one for complication

prediction and one for treatment options. These three child nodes are leaf nodes,

where each stores relevant information including a training model, a encrypted

feature set and the corresponding bloom filter containing fuzzy keyword set of

each disease.

In addition, we also include random components in our design to provide query un-

linkability, hide search and access patterns. Such features strengthen further the

security & privacy capability of our design. Moreover, our scheme accommodates ty-

pos in users’ submitted requests, which could not be handled by the existing schemes.

Finally, we present security analysis, and conduct experiments to evaluate the effec-

tiveness and efficiency of our proposed scheme.

• While encryption algorithms are useful in preventing the information leakage, some

organizations or hospitals are not interested in sharing their data unless they can

11



www.manaraa.com

obtain certain rewards. Thus, in order to create high quality healthcare datasets to

accelerate clinical research, we have developed two tools:

– We propose an incentive mechanism to encourage hospitals to share truthfully

high quality data which can then be aggregated to generate prediction models

with higher accuracy rates. Our incentive mechanism satisfies two desirable

properties: individual rationality (the rewards that the selected hospitals receive

will be greater than their resource consumptions) and platform profitability (the

benefits brought by the participating hospitals should be larger than the total

rewards paid to those hospitals).

– In order to generate more comprehensive and accurate prediction models, we

propose a data cleaning & feature selection method which allows healthcare data

mining researchers to clean up the available large scale dataset and identify

relevant features which are critical in predicting the progression and survival rate

of any given disease. We also explore how data cleaning and feature selection

techniques affect the performance of the prediction models.

Finally, we demonstrate the effectiveness of our approaches using three large datasets

from three population-based studies, namly ALS [1], RHC [2] and STAR*D [121].

Our experimental results show that our prediction models yield good performance in

ALS slope, ALS & RHC survival, and STAR*D relapse predictions.

• Instead of collecting data only from multiple hospitals, we have designed a knowledge

extraction framework, which can integrate the expert knowledge from multiple sources

to create a more useful knowledge base for disease diagnosis and prediction. For

example, online medical websites can be mined to extract reliable contents that can

be included in the learning models to improve the overall performances of the system.

Meanwhile, we also propose a deep learning based medical diagnosis system (DL-

MDS), which can allow authorized users to conduct searches for disease diagnosis

based on their own personalized queries and also provide explanations for the predic-

tion results. Our DL-MDS consists of three components:
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– A Topic Model Module: in order to explore key information in the questions,

we extract informative keywords to generate a topic module, which can (i) cap-

ture the relational connections among questions and diseases; (ii) provide model

interpretation and improve the prediction performance.

– A Query Processing Module: in order to further analyze those questions, we also

train a query processing module, where we first extract medical questions from

healthcare web blogs. Then, we apply a CNN-based word embedding method,

at a sentence level to capture important information. Next, we combine those

key information with the information extracted through topic module to train a

deep learning module.

– Medical Diagnosis Modules: as for the medical diagnosis, we first collect disease

information from professional medical websites. Then, a similarity matching al-

gorithm will be applied to generate an aggregated dataset where the information

of same diseases from multiple sources will be linked together. Next, we separate

diseases into different clusters based on their ICD-10 codes and utilize machine

learning techniques to generate a medical diagnosis module for every disease

cluster.

Finally, we evaluate our proposed methods using real-world data. Our experimental

results show that our proposed system yields good performance on patients’ queries

processing and medical diagnosis.

• While existing machine learning (ML) models have been used to make remarkable

progress in multiple prediction tasks, they are still vulnerable to the adversarial at-

tacks, which leads to security concerns, especially when applying deep neural networks

to safety related systems such as medical diagnosis, treatment recommendations, etc.

Thus, in our work, we present two types of harmful threats to RNN-based machine

learning systems which can trick such ML systems to output wrong prediction results.

– For the first attack, we present an efficient and effective framework, which is

recently designed by a MSU research team, to generate adversarial samples with
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minimum perturbations on input medical sequences.

– For the second attack, instead of using adversarial samples, we propose a new

attack strategy, which is to randomly add gradient noise to adjust recurrent

weights, where the gradients noise are propagated through a set of important

weight vectors until those features associated with the modified weights become

insignificant during training and hence produce a ML model which generates

wrong classification labels for targeted classes.

In addition, we also propose a detection scheme which can be used to infer these two

types of adversarial attacks.

– Detection for Adversarial Samples Attack: Recent studies have shown that ad-

versarial samples are much more sensitive to perturbations than normal samples.

If we impose random perturbations on a normal and an adversarial samples re-

spectively, there is a significant difference between the ratio of label change due

to the perturbations. Thus, we present a recent work on detecting adversar-

ial samples, where the authors determine if an input is a normal sample or an

adversarial one through mutation testing.

– Detection for Weights Adjustment Attack: Based on our observations, we notice

that important features identified from a genuine RNN-based model are signifi-

cantly different from those identified from a maliciously modified model created

from the original model. Thus, we design a detection scheme, which compares

the identified important features of a similar ML system (e.g., a traditional ran-

dom forest model) with those obtained using the downloaded RNN-based ML

system which may be maliciously modified.

Moreover, we propose a Static/Dynamic Quantization-based defense solution (SDQDS),

which uses quantized weights and does not require any modification to the training

procedure and yet relatively effective in defending against these two types of adver-

sarial attacks. Finally, we conduct various experiments using both synthetic and real

healthcare datasets which contain patient records with many attributes to demon-
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strate that these two types of attacks are effective against RNN-based healthcare

machine learning models. The evaluation results for our detect and defense solutions

also show that they are feasible and practical.

1.4 Organization

The dissertation is organized as follows.

In Chapter 2, we propose a privacy-preserving disease treatment and complication pre-

diction scheme (PDTCPS), which allows authorized users to conduct searches for disease

diagnosis, personalized treatments, and prediction of potential complications. PDTCPS

uses a tree-based structure to improve search accuracy and storage efficiency. In addition,

our design also allows healthcare providers and the public cloud to collectively generate

aggregated training models for disease diagnosis, personalized treatments and complica-

tions prediction. Moreover, our design provides query unlinkability and hides both search

& access patterns. Finally, we conduct experiments via using two realistic datasets and the

evaluation results show that our scheme is more efficient and accurate than the other two

existing schemes.

In Chapter 3, we propose an incentive model which provides individual rationality and

plat- form profitability features to encourage hospitals to share high quality data for such

predictions. We also demonstrate a data cleaning & feature selection method, which allows

healthcare data mining researchers to clean up the available large scale dataset and identify

critical features in predicting the progression and survival rate of any given disease. In

addition, we provide extensive experiments using three large datasets to prove that our

learning models perform well in disease predictions and our incentive model can achieve

individual rationality and platform profitability in practice.

In Chapter 4, we design a medical knowledge extraction framework to merge medical

knowledge extracted from heterogeneous medical websites to create a more useful knowl-

edge base for disease diagnosis and prediction. In order to allow authorized users to conduct

searches for dis- ease diagnosis more accurately, we also propose a deep learning based med-

ical diagnosis system (DL-MDS), which consists of three components: (i) medical diagnosis
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modules; (ii) a topic model module; (iii) a query processing module. We evaluate our pro-

posed methods using real-world data, where the experimental results show that our proposed

system yields good performance on patients’ queries processing and medical diagnosis.

In Chapter 5, we present a particular threat to Recurrent Neural Network (RNN) based

healthcare ML systems by introducing two types of attacks: (i) adversarial samples attack,

(ii) the malicious modification attack. We also propose low-cost detection and defense

mechanisms to prevent such adversarial attacks. Finally, we conduct experiments using

both synthetic and real-world datasets to validate the feasibility of our proposed methods.

In Chapter 6, we will conclude the dissertation and discuss future work directions.
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Chapter 2

Privacy Preserving Disease

Treatment & Complication

Prediction System (PDTCPS)

2.1 Background

In recent years, cloud computing has emerged to be a popular technology that provides

scalable and elastic storage and computation resources for enterprises and individuals. More

and more organizations and individuals begin to embrace these benefits by outsourcing their

data into the cloud [23]. For example: online personal health record (PHR) systems such

as Microsoft HealthVaults allow patients to store and manage their own medical records in

the public cloud. Such systems allow users easy access and sharing of their personal health

data.

Although the cloud-assisted healthcare systems offer a great opportunity to improve

the quality of healthcare services and potentially reduce healthcare costs, there are many

security and privacy concerns. For example, people have started to realize that they would

completely lose control over their personal information once it enters the cyberspace. In

order to minimize the risk of data leakage to the cloud service providers, sensitive data must

be encrypted before being outsourced into the cloud. By doing so, the cloud service providers
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can only see data in encrypted form and never learn any information about the encrypted

data values. However, this in turn makes data utilization challenging. For instance, it is

difficult to apply machine learning techniques to learn from aggregated privately encrypted

data for accurate predictions. In order to solve the problem, a set of techniques has been

developed (e.g., [25, 62, 69, 95]). While some approaches [62, 69] demonstrated that basic

machine learning algorithms such as simple linear classifiers can be performed efficiently

to build models over a small scale encrypted dataset, their efficiency degraded rapidly as

its size grows. Though other techniques [25, 95] had utilized more sophisticated classifiers

(e.g., support vector machine) to address the problem, either they lack security & privacy

features or require large computational cost. A recent work [105] designed a scheme which

provides machine learning models over encrypted dataset but their encryption scheme has

high computational and communication cost. Another recent work [33] also designed a

scheme which allows data mining over encrypted data but their scheme does not construct

encrypted index tree for efficient search. Neither schemes provide features to hide search

and access patterns.

To overcome the above limitations, in this chapter, we design a privacy-preserving dis-

ease treatment, complication prediction scheme (PDTCPS), which allows authorized users

to conduct searches for disease diagnosis, personalized treatments, and prediction of po-

tential complications of their illnesses. In particular, we design an encrypted index tree

which supports fuzzy keyword queries. The tree-based structure is used to provide search

efficiency. Each top level node in our encrypted index tree contains an encrypted cate-

gory keyword that represents a specific body part, e.g., bone & joints, kidneys, etc, and

a Bloom filter which contains all the disease keywords classified under this top level node,

and their associate fuzzy keyword sets. All relevant information, e.g., associated diseases

classified under each top-level node will be stored in the 2nd level nodes. Each 2nd level

node (representing k diseases) has three child nodes, one for diagnosis, one for complication

prediction and one for treatment options. These three child nodes are leaf nodes. Each

leaf node stores relevant information about k diseases, including a training model, its en-

crypted feature sets and the corresponding Bloom filter containing fuzzy keyword set of

each disease. In addition, we include random components in our design to provide query
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unlinkability, hide search and access patterns. Such features strengthen further the security

& privacy capability of our design. Moreover, we present security analysis, and evaluate

the effectiveness and efficiency of our proposed scheme using two datasets from the UCI

machine learning repository [18]. Our experimental results show that compared to two

existing schemes described in [105, 33], our scheme is more efficient (in terms of communi-

cation cost) and has higher accuracy than both of these existing schemes. Additionally, our

scheme accommodates typos in users’ submitted requests, which could not be handled by

the existing schemes. In summary, our contributions can be summarized as follows:

• We propose a Privacy-Preserving Disease Treatment, Complication Prediction Scheme

(PDTCPS), which allows users to conduct privacy-aware searches with high search

efficiency and accuracy.

• PDTCPS is designed to handle typos in queries and provide query unlinkability with

minimal information leakage.

• Our design allows healthcare providers and the public cloud to collectively generate

aggregated training models for disease diagnosis, personalized treatments and predic-

tion of potential illness complications.

• We provide a formal security analysis to justify the privacy-preserving guarantee of

our proposed scheme.

• We present simulation results of our proposed scheme using two UCI datasets, namely

the PIMA Indians Diabetes and the Breast Cancer Wisconsin Datasets.

2.2 Problem Formulation

In this subsection, we first describe our system and threat models. Then, we describe

the design goals of our proposed privacy-preserving disease treatments and complications

prediction system (PDTCPS). Next, we provide descriptions of some important building

blocks used in our solution.
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2.2.1 System Model for PDTCPS

PDTCPS consists of four parties: the hospitals, the public cloud server, a fully-trusted

authority (TA), and individual clients, as shown in Fig 2.1.

• Hospitals: Hospitals first collect patients’ medical records, encrypt them and store

them in the private clouds they owned. The private cloud servers may perform data

mining operations over the stored data to generate locally trained models. Based on

these models, the hospitals can later diagnose diseases, provide personalized treat-

ments, and predict disease complications for their patients. However, since each hos-

pital may only have limited number of patients associated with a particular disease,

the prediction models may not always be comprehensive and accurate. Thus, in order

to obtain more accurate prediction, the hospital servers may send relevant informa-

tion extracted from their trained model securely to the public cloud so that the public

cloud can perform data mining operations on the aggregated data received to generate

a more accurate prediction model for all participating hospitals to use.

• Semi-trusted public cloud: The public cloud stores the relevant encrypted information

sent from each participating hospital, and performs data mining operations to generate

predictive models. It also constructs a keyword based encrypted index tree which

allows authorized clients to conduct searches based on their individual profiles, lab

tests for potential disease diagnosis, treatment options, and risk analysis of potential

complications related to their current illnesses.

• Fully-trusted authority (TA): TA is responsible for generating and distributing the

symmetric encryption keys to authorized clients and all participating hospitals. It is

also responsible for sending relevant disease categorization information, e.g., which

disease belongs to which top-level category nodes, to the hospitals and the public

cloud.

• Clients: Clients refer to those who wish to conduct searches for disease diagnosis,

personalized treatments, and assessing their risks of disease complications caused by

their current illnesses.
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Figure 2.1: System Model for PDTCPS

At the initial phase, TA generates the encryption keys and sends them to all participat-

ing hospitals and their authorized clients. Upon receiving the keys, each hospital server first

encrypts its data and performs data mining operations to generate locally trained models.

Each hospital server then sends the relevant information from the locally trained models

securely to the public cloud. The public cloud will then generate aggregated trained models

for disease diagnosis, possible treatment models for different groups of patients based on

their profiles and medical histories, and prediction models of any potential disease compli-

cations. In addition, the public cloud will generate an encrypted index tree which allows

clients to search for information more efficiently. Details of what the encrypted index tree

contains will be described in Section 2.3.

When a client wishes to query the public cloud for health related predictions, the client

first uses the received keys from the TA to generate a search request and then sends it to

the public cloud. After receiving the encrypted query, the public cloud server will perform

the search over the encrypted index tree and send back all the relevant answers to the

authorized client.

2.2.2 Adversarial Model

We assume that the trusted authority can be trusted fully and it will not be compromised.

As for all participating hospitals, we assume that they are semi-trusted, i.e., they will

honestly follow the designated protocols but always curious to gain additional insights from
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the information sent by other hospitals. They may also collude with the cloud server to

find such information.

Similarly, we also adopt a “honest-but-curious” model for the public cloud server as in

[153, 154]. Like the hospitals, it will execute the designated protocols honestly but will

be curious to infer any extra information it can derive from the information sent by all

participating hospitals and from the queries/responses issued/received by the authorized

clients.

Depending on the available information to the cloud server, the following two threat

models are considered in this work:

• Known Ciphertext Model: The encrypted data, the secure index, encrypted queries

and responses are all available to the cloud server.

• Known Background Model: In addition to the available information assumed in the

former model, the cloud server can also use statistical information to deduce specific

contents in a query. It can even collude with other attackers to derive additional

information from the encrypted data.

In addition, we assume users are trusted entities. They obtain authorized keys from the

TA.

2.2.3 Design Goals

To address the security and threat models we have presented earlier, we design a PDTCPS

scheme, which allows authorized users to conduct privacy-aware searches for disease di-

agnosis, personalized treatment and prediction of potential complications based on their

individual profiles, laboratory test results, and potential medical histories. Our system is

designed with the following goals in mind:

• Fuzzy Keyword Search: During query generation, an authorized client may make typos

while inputting query contents. For example, a client may type “dibetes” instead of

“diabetes” in the following query: “(disease=“dibetes”)”. Our scheme should support

such fuzzy query and still return relevant information.
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• Search Efficiency and Accuracy: The scheme should achieve high search accuracy, i.e.,

it should return mostly correct answers to search queries. It should also achieve high

search efficiency, i.e., the average search time per query is small.

• Privacy Guarantee: Our system should provide privacy guarantees by not leaking

sensitive information about stored data or encrypted indices. Our system should

provide query privacy and unlinkability. The cloud server should not be able to

deduce sensitive contents that have been used for search. Submitted queries should

look different each time even if the same keyword and lab results are submitted.

Furthermore, the search and access patterns should be hidden from the public cloud

server. In other words, the encrypted index structure should be designed such that

the server traverses different nodes on the index tree even for the same search request.

• Extensibility: Our system should be designed such that the encrypted index tree as

well as trained data models can be updated easily without complete redesign.

2.2.4 Important Building Blocks

Before we present the detailed description of our newly designed scheme, we first discuss

some of the security tools we use in this work, and define a few terminologies.

1. Organization of Information Regarding Various Diseases: Patients may suffer from

different types of diseases. To make it easier for PDTCPS we design to answer users’

questions regarding diagnosis, treatment options, or potential disease complications, we

decide to categorize patients’ illnesses similar to how a popular healthcare forum website

that organizes different types of diseases. Diseases are categorized based on how they affect

human body parts (refer to Fig 2.2), e.g., Endocrine includes all diseases which affect the

endocrine system such as diabetes, hypothyroidism, hyperthyroidism, etc.

For each disease, our system keeps several pieces of important information, namely

(i) a trained model for disease diagnosis based on results of laboratory tests, symptoms,

(ii)various treatment options based on patients’ profiles, and (iii) a trained model for com-

plication prediction based on patients’ profiles, laboratory tests, and medical histories, e.g.,

other diseases a patient may have.
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Figure 2.2: Healthcare Searchable Tree

2. Order-preserving Encryption: Order-preserving symmetric encryption (OPE) is a

deterministic encryption scheme which preserves numerical ordering of the plaintexts. It

allows order relations between data items to be established based on their encrypted values,

without revealing the data itself. For example if x ≤ y, then OPEK(x) ≤ OPEK(y), for

any secret key K. Thus, with the help of OPE encryption, the server can perform data

mining operations over the encrypted data.

3. Parallel SVM method: Support Vector Machines (SVMs) are powerful classification

and regression tools, but their computational costs increase rapidly with the size of training

instances. Efficient parallel algorithms for constructing SVM models are critical to ensure

that SVM can be used for large scale data mining analysis.

The parallel SVM method [162] we use is based on the cascade SVM model where a

partial SVM model is constructed for each partition of a large dataset. Then, the partial

SVMs are aggregated iteratively as shown in Fig 3. The sets of support vectors from two

SVMs are merged into one set and used to create a new SVM . Such a process is repeated

until only one set of support vectors remain. This parallel SVM approach allows large scale

optimization problems to be divided into smaller independent optimizations.

4. Parallel Decision Tree method: Decision trees are simple yet effective classification

algorithms, but one needs to sort all numerical attributes in order to decide where to split

a node within a decision tree, which costs much computation time when a large data set is

involved. Thus, it is important to develop parallel version of decision tree algorithms which
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Figure 2.3: Training process of parallel SVM

can be efficient and scalable.

The decision tree method we use is a parallel histogram-based decision tree algorithm

for classification [29] where the master node builds the regression trees layer by layer as

shown in Fig 2.4. At each iteration, a new layer is constructed as follows: each node

compresses its share of the data using histograms and sends them to the master node.

The master node merges the histograms and uses them to approximate the best splits

for each leaf node, thereby constructing a new layer. Then, the master node sends this

new layer to each participating node, and those nodes construct histograms for this new

layer. Therefore, every iteration consists of an updating phase performed simultaneously

by all the participating nodes and a merging phase performed by the master node. The

communication cost for this method consists of all the histograms sent by the participating

nodes to the master and the master sending information of a new layer of the tree to those

nodes.

2.3 PDTCPS SCHEME

As discussed earlier, PDTCPS provides a secure way for clients to diagnose their diseases,

predict complications and search for possible treatment options for their illnesses. One

important component of our PDTCPS system is the encrypted index tree that the public

cloud constructs based on instructions given by the TA. Before we describe our scheme, we
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Figure 2.4: Training process of parallel Decision Tree

first give the definitions of various notations we use.

Notations:

• KO - the symmetric key for OPE encryption.

• KB - the Bloom filter generation key.

• KA - the key used to generate key hash values for keywords, i.e. Enc(w) =

KeyHash(KA, w).

• CW - the category keywords set, denoted as CW={cw1, cw2, · · · , cw|CW |}.

• W - the disease keywords set, denoted as W={w1, w2, · · · , w|W |}.

• W̃i - a subset of W , indicating the disease keywords in the ith category, denoted as

W̃i={ai1, ai2, · · · , ai|W̃i|
}, where aij ∈ W .

• S̃ - a set, indicating the number of children that under each category node, denoted

as S̃ = {|C1|, |C2|, · · · |C|S̃||}.

• k - the number of diseases stored in every 2nd level node.

• bf(wi) - a Bloom filter, containing the keyword wi and its associated fuzzy keywords.

• s̃v - a set, indicating the training features of a disease.

• cwq - the category keyword for the query.

• F - the lab test results set, denoted as F = {F1, F2, · · · }.

• h - the number of hash functions used in generating the Bloom filter.
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2.3.1 Overview

Fig 2.5 is an overview of PDTCPS which shows the information provided by the TA, hos-

pitals, and queries submitted by authorized clients.

Figure 2.5: Overview of PDTCPS

During the encrypted index tree construction phase, the TA sends the public cloud some

information to help the public cloud build the encrypted index tree. Specifically, TA sends

the public cloud a set of encrypted category keywords, which will form the 1st level nodes.

In addition, the TA sends a Bloom filter for each 1st level node which contains keywords of

all the illnesses listed under this 1st level node as well as their associated fuzzy keywords.

Fuzzy keywords are generated to deal with typos. For example, for a disease or category

keyword, wi = “hypoglycemia”, the following wild-card keywords having an edit distance

of 1 from the keyword “hypoglycemia”: {∗hypoglycemia, h∗ypoglycemia, hy ∗poglycemia,

hyp ∗ oglycemia, hypo ∗ glycemia, hypog ∗ lycemia, hypogl ∗ ycemia, hypogly ∗ cemia,

hypoglyc ∗ emia, hypoglyce ∗ mia, hypoglycem ∗ ia, hypoglycemi ∗ a, · · · } are inserted

into the Bloom filter. Note that, it is easy to extend our system to support multiple edit

distances. (e.g., generate one Bloom filter per edit distance).

The TA also sends information regarding the number of children each 1st level node will

have, e.g., top-level node i will have |Ci| 2nd level nodes. Each 2nd level node has a Bloom

filter containing k encrypted disease keywords and their associated fuzzy keyword sets (to
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address typos). All Bloom filters associated with 2nd level nodes are also sent to the public

cloud. The public cloud then stores those Bloom filters in the appropriate child nodes of

first level nodes.

Each 2nd level node represents k diseases and has three child nodes, namely (i) diagnosis,

(ii) complication prediction, and (iii) treatment options. These child nodes are leaf nodes.

The diagnosis node will contain the training models for disease diagnosis of the k diseases

that this 2nd level node represents. Each training model has an associated disease token

(which is a secure Bloom filter that contains hash values of a disease keyword with its typos)

for the public cloud to determine which training model to use when it processes a query.

Similarly, the complication prediction node contains k training models, each for predicting

potential complications which may arise of a particular disease. Finally, the treatment node

contains training models for k diseases, one for each illness. Each training model represents

an aggregated model constructed by the public cloud using encrypted information sent

by each hospital. The training model is built using patients’ profiles, disease treatments,

laboratory tests, etc, and is used to assess the best treatment option for a particular patient

based on his personal profile, and/or laboratory test results.

As for the clients, they may use their personal profiles and lab tests results to generate

search requests. After receiving an encrypted search request, the public cloud server first

finds a matched category in the 1st level category nodes. Then, the server will only search

for matching results among the child nodes of that best matched 1st level category node.

This can significantly reduce the search time because the server merely searches information

within this relevant sub-tree structure, only a subset of the whole information collection.

The server goes through the child nodes of this selected category node to find k = 2 best

matched 2nd level nodes. Next, based on the query identifier, the server randomly selects

one of the k matched level 2 nodes, and traverses into its sub-tree structure based on

the query type, e.g., diagnosis, complication or treatment. After finding the matched leaf

node, the cloud server will return the answers using the appropriate training model for that

query. For example, based on the disease token and query type, the cloud server selects the

appropriate training model to see if a client has suffered this disease or predict potential

complications that may arise or the treatment options for this particular disease based on
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that client’s unique profiles and laboratory test results.

2.3.2 Detail Design of PDTCPS

We present more detailed descriptions of the proposed scheme in this subsection.

(1) Index Tree Construction

The public cloud constructs a keyword based encrypted index tree which allows au-

thorized clients to conduct searches for health related questions based on their individual

profiles and lab tests results.

Here, we describe how the encrypted index tree is constructed. In our design, we use

SHA− 256 as our keyed hash function, and use L-bit Bloom filters to handle typos.

1. Operations performed by the TA:

(i) In the initialization phase, a secret key SK = {KO,KB,KA} is produced by the trust

authority where (a) KO is a symmetric key for OPE operation; (b)KB is the generation

key for the Bloom filter generation; (c) KA is the key used for computing key hash values

of category keywords.

(ii) Then, TA generates a set of key hash values of category keywords, Enc(CW ) =

{Enc(cw1), Enc(cw2), · · · } which will form the 1st level nodes.

(iii) For every category i, TA also produces a set: W̃i = {ai1, ai2, · · · , ai|W̃i|
}, where aij

is a disease keyword belonging to category i. Next, for each keyword aij , the TA generates

a fuzzy keyword set: {aij1 , aij2 , · · · }, where aijz is a single-typo keyword of aij . The TA

inserts the keyed hash values of all relevant disease keywords and their associated fuzzy

keyword sets into a L-bit Bloom filter, bf(W̃i), using the secret key KB.

(iv) In addition, TA determines the number of children nodes, |Ci| for each category

node i and forms the set S̃ = {|C1|, |C2|, · · · , |C|S̃||}. Then, for each child node (e.g., the

jth child node of the ith category), it stores a keyword set Dij , which contains k disease

keywords. Next, TA generates a Bloom filter bf(Dij), which contains those k keywords

as well as their associated fuzzy keywords. Our solution inserts the same disease into k

different 2nd level nodes so that the cloud server can go through k different nodes (based on

query identifiers) to find a matched leaf node even with the same keyword search request.

Thus, both the search and path patterns can be hidden from the cloud server.
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(v) Finally, TA delivers all the generated ciphertexts including {Enc(CW ),S̃,{BFD(W̃1),

· · · ,BFD(W̃|S|)}}, whereBFD(W̃i)={Icwi ,bf(W̃i),{bf(Di1),bf(Di2),· · · ,bf(Di|Ci|)}} and Icwi

is a category index, to the cloud server.

(vi) It also sends both encrypted category keywords, Enc(CW ) and the secret key SK

to every hospital. The secret key SK is also sent to all authorized clients.

2. Operations performed by hospitals:

(i) Every hospital Hm contains a category set C̃Wm= {kw1,kw2,· · · ,kw|C̃Wm|
} and a

disease keyword set {Gm(kw1), Gm(kw2), · · · , Gm(kw|C̃Wm|
)}, where Gm(kwi) = {bi1, bi2,

· · · , bi|Gm(kwi)|} and bij is a disease keyword.

(ii) Then, hospital Hm generates Enc(CWm) which consists of all key hash values of

category keywords in CWm.

(iii) For each illness bij which Hm has relevant patients’ information, it also generates

bf(bij) using the secret key KB.

(iv) Next, Hm uses a classification method to extract the training feature set for that

illness bij , denoted as s̃v(bij). Later, it encrypts this training feature set using OPE and the

KO key to produce S̃V (bij)=OPEKO(s̃v(bij)) + rij , where rij are some random value sets.

The random values are added to ensure the participating hospitals cannot uncover the true

values of these feature vectors each hospital sends even if some hospitals collude with the

cloud server.

(v) Finally, hospitalHm sends {Enc(C̃Wm),{BSV (Gm(kw1)),· · · ,BSV (Gm(kw|C̃Wm|
))}},

where BSV (Gm(kwi)) = {Ikwi , {bf(bi1), S̃V (bi1)}, · · · , {bf(bi|Gm(kwi)|), S̃V (bi|Gm(kwi)|)}}

and Ikwi is the category index for category keyword kwi, to the cloud server.

3. GenIndex:

(i) The cloud server first builds the 1st level nodes, where the ith category node stores

the encrypted keyword Enc(cwi) and the corresponding Bloom filter bf(W̃i).

(ii) Then, the public cloud uses the received information to build the 2nd level, where

the jth second level node of the ith first level node stores the corresponding Bloom filter

bf(Dij).

(iii) For each 2nd level node, the cloud server constructs three children nodes, one for

each query type, i.e., “diagnose”, “complication” and “treatment”. An integer value can be
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used to represent each query type.

(iv) For each received set of information from a hospital, the cloud server first uses the

received Enc(kwi) to find the matched 1st level category node. Then, it computes the inner

product values between each of the received bf(bij) and the Bloom filters stored in the |Ci|

child nodes under the ith category node to find the k matched 2nd level nodes. Next, the

cloud server traverses into their leaf nodes to find the right training model.

(v) If no training model exists, the newly received training model will be stored. If

a training model already exists, the public cloud generates a new model by combining

previously stored feature vectors for that disease with the most recently received feature

vectors to generate a new training model.

With the procedures outline above, the cloud server finally constructs the encrypted

index tree, which is shown in Fig 2.6.

Figure 2.6: PDTCPS Index Tree Structure

(2) Query Generation

To provide query unlinkability, we need to generate a different search request even for

the same keyword query.

(i) Given a query Q={cwq, (F1, · · · , Fi, · · · ), xq, tq}, where cwq is the category keyword,

Fi is either a personal attribute of a client or his lab test result i, xq is the disease keyword

and tq is the query type.

(ii) An authorized client first generates a random query id IDq and a keyed hash value
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of the category keyword as Enc(cwq).

(iii) Each Fi will be encrypted as OPEKO(Fi)+Ri using the received encryption key KO

and a random value Ri. This step ensures that the same Fi results in different encrypted

value and hence provides query unlinkability.

(iv) The client also generates a fuzzy keyword set: {xq1 , · · · , xqi , · · · }, where xqi is a

single-typo keyword of xq. Then, the client generates bf(xq) using the secret key KB.

(v) Finally, the encrypted search request EncSK(Q)={IDq, (OPEKO(F1) +R1, · · · ,

OPEKO(Fi) +Ri, · · · ), Enc(cwq), bf(xq), hash(tq)}, is submitted to the cloud server.

(3) Search Process

(i) Upon receiving the search request EncSK(Q), the server first checks if Enc(cwq) can

be matched with the stored encrypted keywords Enc(CW ) in the 1st level nodes.

(ii) If it is not found, then the cloud server computes the inner products of Bloom filter

bf(xq) in the query with |S̃| Bloom filters stored in the 1st level nodes. The one with the

best match will be the selected 1st level node. (Fig 2.7)

(iii) Next, the cloud server searches through the child nodes of this selected 1st level

category node by performing the following operations:

• Compute the inner product values between the bf(xq) and the stored |Ci| Bloom filters

in the 2nd level nodes.

• Find the top k nodes among those |Ci| nodes in the second level.

• Next, select one of k matched 2nd level nodes, node j, using j = IDq mod (k) and

travels into its sub-tree nodes based on the query type.

(iv) After finding the matched leaf node, the cloud server can find the appropriate

training model to diagnose disease, predict potential complications or determine the best

treatment options for a client based on his query type, tq.

2.4 Security Analysis

In this subsection, we analyze the privacy characteristic of PDTCPS against possible at-

tacks by various entities involved in our system. Adversaries in our system could be partic-

ipating hospitals, network eavesdroppers, or even the cloud server. For instance, hospitals
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Figure 2.7: Inner Product Computation

and the cloud server in our system are assumed to be semi-trusted, implying that they

follow the protocol execution, but may attempt to learn additional information. A net-

work eavesdropper could have the resources to monitor all messages in the network or the

messages sent by a particular hospital or a client.

2.4.1 Network Eavesdroppers

For network eavesdroppers, PDTCPS achieves privacy preserving mainly via encrypted

communication. Our designed scheme guarantees that attackers cannot uncover any knowl-

edge of any content within the ciphertext as long as eavesdroppers cannot obtain the cryp-

tographic keys. In addition, by adding randomness in each encrypted query, the adversaries

cannot conduct frequency analysis to gain additional information about submitted queries

and hence no sensitive information is revealed.

2.4.2 Semi-honest Hospitals

In the presence of semi-honest hospitals, our scheme achieves information-theoretic security.

Specifically, our design adds some randomness to the encrypted training features generated

by each hospital before they are being sent to the cloud server. Thus, participating hospitals

cannot gain additional information on the ciphertext sent by other hospitals even if they

know the secret key.

33



www.manaraa.com

2.4.3 Semi-honest Cloud Server

In this part, we will show how PDTCPS satisfies several search privacy requirements:

• Index and Query confidentiality under both the known ciphertext model and the

known background model. More details are provided in subsequent subsections.

• Query unlinkability: Our PDTCPS generates different search requests even with the

same query keyword and hence provides query unlinkability to a certain extent.

• Hiding access pattern: Our design ensures that the cloud server traverses different

nodes to find a match even with the same keyword search request and hence the access

patterns are hidden from the server.

Security Analysis of PDTCPS Under the Known Ciphertext Model

Here, we adapt the simulation-based security model in [144] to prove that our scheme can be

secure under the known ciphertext attack. Before proving, we first introduce some notations

that will be used in the proving process.

• History: It is an index set I and a query set Q = {Q1, Q2, · · · }, denoted as H = (I,Q).

• View: The cloud server can only see the encrypted form of a H, denoted as V I(H),

including the secure indexes Enc(I) and the encrypted search requests Enc(Q) = {Enc(Q1),

Enc(Q2), · · · }.

• Trace: A trace is a set of queries, denoted as Tr(H) = {Tr(Q1), Tr(Q2), ...}. Tr(Qi)

captures the information for each query Qi including the search pattern PAQi , and the

outcome of the search REQi which is available to the cloud server to gain additional infor-

mation.

As in [144], our proof is based on the following argument: given two histories that

produce the same trace, if the cloud server cannot distinguish which history is produced

by the simulator, then the cloud server cannot learn additional knowledge beyond the

information that the system is willing to leak.

We adopt a simulator that can simulate a view V I(H)′ indistinguishable from cloud

server’s view V I(H). The simulator works as follows:

1. For the encrypted query Enc(Q1), the simulator generates Enc(Q1)
′ as follows:
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(i) The simulator first selects random strings {s1, s2, s3}, where si ∈ {0, 1}U , and then

sets ID′Q1
= s1, hash(cw′Q1

) = s2 and hash(t′Q1
) = s3 separately. U is the length of hash-

value, ID′Q1
is the query identifier, and cw′Q1

is the category keyword in that query and t′Q1

is its query type.

(ii) The simulator also generates a L′-bit vector v ∈ {0, 1}L′ and sets bf(x′Q1
) = v where

x′Q1
mimics the disease keyword in the query.

(iii) Next, the simulator builds a vector which represents encrypted attributes used in

the query, Enc(F ′Q1
) = {G1, G2, · · · }, where Gi is a random string chosen from {0, 1}U .

(iv) After the above steps, the following encrypted query, Enc(Q1)
′={ID′Q1

, Enc(F ′Q1
),

hash(cw′Q1
), bf(x′Q1

),hash(t′Q1
)}, is simulated.

2. Based on the search pattern PAQ1 , the simulator can generate the Enc(I)′ as follows:

(i) Let us assume PAQ1 goes through category node ca(1), intermediate node im(1) and

leaf node ln(1) of the index tree.

(ii) The simulator first sets the Enc(ca(1))′ = hash(cw′Q1
).

(iii) Then, the simulator adds bf(x′Q1
) to bf(ca(1))′.

(iv) The simulator also sets bf(D̃′Q1)′ = bf(D̃′Q1)′ + bf(x′Q1
), where |D̃′Q1 | = k and

D̃′Q1 [(ID′Q1
)mode(k)] = im(1).

3. For subsequent queries such as Qj with search pattern PAQj which goes through

category node ca(j), intermediate node im(j) and leaf node ln(j) of the index tree where 2

≤ i ≤ j ≤ |Q|, the simulator does the following:

(i) If ca(j), im(j), ln(j) are not same as ca(i), im(i), ln(i), then the simulator repeats

the same process as simulating Enc(Q1)
′ and Enc(I)′.

(ii) If ca(j) is the same as ca(i) but im(j) 6= im(i), then the simulator repeats the same

process as simulating Enc(Q1)
′ and Enc(I)′ with the condition that hash(cw′Qj )=hash(cw′Qi).

(iii)If im(j) is the same as im(i) but ln(j) 6= ln(i), then the simulator sets hash(t′Qj ) 6=

hash(t′Qi) and also generates all the other necessary information.

(iv) If the search pattern PAQj ends at the same leaf node ln(i) as the previous query

Qi, then the simulator sets hash(t′Qj ) = hash(t′Qi) and does the following:

• If the search result REQj for the query Qj , is not the same as REQi , then the simulator

repeats the same process as simulating Enc(Q1)
′ and Enc(I)′ with the condition that the
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Enc(F ′Qj ) is different from the Enc(F ′Qi).

• If the search result is the same, then the simulator sets bf(x′Qj ) = bf(x′Qi) and generates

the Enc(F ′Qj ), which is similar to the Enc(F ′Qi).

4. After all the queries have been simulated, the simulator does the following:

• It converts each bf(ca(i))′ and bf(im(i))′ into L′-bit {0, 1}L′ vectors by replacing the

elements bigger than 1 with 1.

• It adds Enc(F ′Qi) to the training feature set s̃v(x′Qi) to make sure that the query

result is the same as REQi . Note that the training feature set s̃v(x′Qi) is attached to the

appropriate simulated leaf node.

5. The simulator outputs the view V I(H)′=(Enc(I)′, Enc(Q)′).

In summary, the Enc(I)′ and Enc(Q)′ can generate the same trace as the one that the

cloud server has. Thus, we claim that no probabilistic polynomial-time (P.P.T) adversary

can distinguish between the view V I(H)′ and V I(H).

Security Analysis of PDTCPS Under the Known Background Model

In this part, we analyze the security of PDTCPS under the known background attack

model. For each query Qi we generate the encrypted search request as follows:

Enc(Qi)={IDQi ,Enc(FQi),hash(cwQi),bf(xQi),hash(tQi)}. Since a random value set is

introduced during the query generation, PDTCPS produces different search requests even

for the same query. Thus, our scheme can achieve query unlinkability such that it makes it

hard for the cloud server to link one transformed request to another even if both contain

the same keyword.

In addition, since in the known background model, the cloud server can deduce the

statistical information by analyzing the search and path patterns for each query. Thus, it is

important to hide those information from the cloud. In our scheme, we have extended every

2nd level node to contain k different keywords so that the cloud server randomly selects one

of the k matched nodes containing the desired keyword. Therefore, both the search and

path patterns can be hidden from the cloud server.

Discussion: Since OPE is a deterministic encryption, so it is subjected to two known

security vulnerabilities, namely (i) frequency-based attack where adversaries use frequency
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distributions of ciphertext and plaintext to infer their correspondence and (ii) order-relations

among plaintexts where attackers can easily break the encryption via sorting of known

values of plaintexts and ciphertexts using domain knowledge. However, since we have

added random values in PDTCPS, attackers simply cannot infer such information. Thus,

our design is safe against both frequency and domain attacks.

2.5 Performance Evaluation

We implemented PDTCPS and conduct our experiments on a Mac Pro with an Intel Core

i5 processor running at 2.6GHz and 8GB memory. The following performance metrics are

used to evaluate our scheme (PDTCPS) and two other proposed solutions, namely the

CAM [105], and the hyperplane decision-tree based scheme (HDBS) [33]:

• Index construction time, which is the time incurred in generating the proposed index

tree structure;

• The generation time, testing time, accuracy, communication and storage costs of the

training model;

• The accuracy of the search results.

First, we select |S̃| categories based on the major categories in Medical Health provided

in the medical website, (e.g., Endocrine, Intestinal, Throat etc), as the 1st level nodes of

the index tree.

Then, based on these |S̃| categories, we extract
∑|S̃|

i=1 |Ci| unique disease keywords,

e.g., Endocrine includes all diseases which affect the endocrine system such as diabetes,

hypothyroidism, hyperthyroidism and so on. Next, we map all these
∑|S̃|

i=1 |Ci| distinct

keywords into their appropriate categories and build the encrypted index tree, where each

leaf node represents k disease keywords. We also set k=2, the length of the Bloom filter,

L, to 64bytes, and use h=2 hash functions to insert keywords and their associated fuzzy

keyword sets to a Bloom filter in our PDTCPS scheme.

2.5.1 Construction and Communication Costs For Index Tree

The index construction process contains two major steps:
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• TA generates sets of encrypted information including the encrypted category keywords,

Bloom filters, and the number of children that under each category node. Then, it sends

these Bloom filters to the public cloud.

• After receiving the information above, the public cloud stores all these information in

the index tree.

This index construction cost is only a one-time computation cost. Since the encrypted

index tree contains |S̃| category nodes and
∑|S̃|

i=1 |Ci| second level nodes, the TA needs to

generate |S̃| encrypted category keywords and |S̃|+∑|S̃|
i=1 |Ci| Bloom filters(BFs). Fig 2.8(a)

shows the generation cost for a L-bit Bloom filter and from the results we can see the

generation cost increases linearly with the number of inserted keywords. In addition, it

needs to send all these |S̃|+ ∑|S̃|
i=1 |Ci| Bloom filters to the public cloud to be stored in the

encrypted index tree. Since the results in our system show a linear relationship between

the time and the number of disease keywords, so the realistic overhead of our system will

increase linearly according to the number of disease keywords. For example, base on the

Dewey Decimal system, which is a library classification system, we can further cluster all

the existing 30,000 human diseases into almost 60 categories. Assuming |S̃|=60 and each

top-level node has 500 child nodes, then the total computational cost can be computed

as follows: it takes 0.39 ms to insert 60 fuzzy keywords into the BF of a child node and

0.39ms*500*30/60=95 ms to insert 500*30 fuzzy keywords into the BF of each category

node. Thus, the overall index construction time for 30,000 diseases is 17 sec. Furthermore,

to ensure the collision rate of BF at each category node to 1%, we need to use a BF of

length 305 Kbytes. In addition, each child node contains 2 disease keywords where the

average keyword length is 15. Thus, we need a 1.2 Kbytes Bloom filter for each child node

to ensure a 1% collision rate. Therefore, the total one-time communication cost that TA

incurs to send relevant information to the cloud for index tree construction of 30,000 diseases

is (305*60+1.2*500*60)=53 Mbytes.

2.5.2 Training Model Evaluation

(1) Training Model Generation Method

As for the training model generation cost, we first describe the construction processes
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Figure 2.8: (a)Bloom Filter Generation Cost Vs Number of Keywords. (b)Inner Product
Computation Cost Vs Bloom Filter Length .

for PDTCPS, CAM and HDBS schemes. Since we do not have access to any dataset

for complications and treatments, here we only evaluate the performance of our model for

disease diagnosis.

(i) PDTCPS: For each disease associated with a leaf node, the cloud server generates

a training model based on the received training feature sets from all hospitals. Here, we use

the parallel SVM method to construct an aggregate SVM model. By having each hospital

conducts its own data mining and sends only encrypted support vectors makes our solution

more efficient and scalable.

(ii) CAM [105]: This scheme uses a parallel histogram-based decision tree algorithm to

generate the training model where every iteration consists of an updating phase performed

simultaneously by all the hospitals and a merging phase performed by the cloud server. At

each iteration, a new layer is constructed as follows: each hospital compresses its share of

the data using histograms and sends them to the cloud. Then, the cloud server merges

the histograms and determines the best splits for each node in the decision tree, thereby

constructing a new layer. Next, it sends this new layer to each hospital, and the hospitals

construct histograms for this new layer. Finally, the cloud server can build the regression

tree layer by layer through the iterations.

(iii) Hyperplane Decision Based Scheme (HDBS) [33]: This scheme introduces a so-

phisticated approach to perform machine learning on encrypted data. All hospitals send

their encrypted datasets to the public cloud server. The public cloud server generates an

aggregated training model based on all these encrypted datasets using homomorphic en-
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cryption method. Next, the client generates an encrypted search and submits to the public

cloud. The public cloud traverses the encrypted index tree as described before and sends

relevant answers back to the client in encrypted form. The client then decrypts the returned

response to obtain the answer.

(2) Training Model Performance

In this part, we conduct Exp 1 and Exp 2 to evaluate the performance of the above

three schemes.

(A) Exp 1: In the experiment, we use the Pima Indians Diabetes Data Set from the

UCI machine learning repository [18], which contains 768 instances with 9 attributes of

two labeled classes. We first select 90% of the Pima dataset as training set, S1, and the

remaining 10% as the test set T1. Then, based on the distribution (e.g., mean or standard

deviation) of each attribute, we generate two synthetic datasets from S1 denoted as S11 and

S12, where S11 contains 1384 instances, and S12 contains 4152 instances. Next, we partition

the synthetic datasets as follows (i) we partition each synthetic dataset into m equal parts

and assign each part to one hospital. (ii) Since in the real world different hospital may

have different data size, so we also divide each synthetic dataset into m unequal parts, and

assign each of them to one hospital.

(B) Exp 2: To ensure that the conclusions we draw from Exp 1 is reliable, we also use

the Breast Cancer Wisconsin (Original) Data Set, which contains 699 instances with 10

attributes and two class labels, to conduct Exp 2. The same method used in Exp 1 is used

to generate the dataset for each hospital.

After data generation, the hospitals then extract the training features from their assigned

datasets and encrypt them using the OPE algorithm, where the encryption complexity is

largely based on the bit length of each feature. For example, our experiments show that

using only the 1st 10 bits of the encrypted value produce similar prediction accuracy in

disease prediction. The OPE algorithm takes 7.1ms to encrypt a 10-bit length feature.

Thus, we only use the first 10 bits of the encryption value for all our experiments to reduce

encryption time without affecting accuracy.

(C) Performance Evaluation: Table 2.1 & Table 2.2 show the evaluation results for all

the above three schemes. Note that (i) the reported storage cost is the cost of storing one
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Table 2.1: Training Model Evaluation for Exp1

Scheme # of

Fea-

tures

# of

In-

stances

Equal

Data

Size

# of

Leaf

Nodes

Training

Time

Communicate

Cost

Testing

Time

Accuracy Storage

Cost

PDTCPS 9
1384

Yes 0.05s 8.09KB 0.024ms 81.6% 7.9KB

No 0.05s 8.1KB 0.024ms 80.3% 7.7KB

4152
Yes 0.13s 23.48KB 0.024ms 76.3% 21.8KB

No 0.15s 23.50KB 0.024ms 80.3% 21.9KB

CAM 9
1384

Yes 48 2.0s 8.7KB 0.015ms 75.0% 0.18KB

No 41 1.8s 7.9KB 0.014ms 75.0% 0.17KB

4152
Yes 187 7.8s 28.1KB 0.026ms 68.4% 0.6KB

No 178 6.9s 24.60KB 0.024ms 69.7% 0.58KB

Table 2.2: Training Model Evaluation for Exp2

Scheme # of

Fea-

tures

# of

In-

stances

Equal

Data

Size

# of

Leaf

Nodes

Training

Time

Communicate

Cost

Testing

Time

Accuracy Storage

Cost

PDTCPS 10
1680

Yes 0.004s 1.01KB 0.027ms 92.9% 1.1KB

No 0.005s 1.07KB 0.027ms 92.1% 1.2KB

5040
Yes 0.011s 1.67KB 0.027ms 92.1% 1.5KB

No 0.012s 1.72KB 0.027ms 90.6% 1.5KB

CAM 10
1680

Yes 24 1.5s 9.6KB 0.010ms 86.4% 0.06KB

No 20 1.3s 8.7KB 0.09ms 88.5% 0.05KB

5040
Yes 42 5.8s 20.8KB 0.015ms 84.3% 0.1KB

No 36 5.5s 18.9KB 0.013ms 86.4% 0.09KB

HDBS 10 699 0.032s 35.84KB 151.1ms
1The results of HDBS are extracted from [33], which scaled to the same CPU environment of our

scheme;

training model for a particular disease, and (ii) no HDBS result is reported for the diabetic

dataset because we have no access to their codes, and they did not have published results

using that dataset. One can see that the training time for our scheme (PDTCPS) is much

smaller than the CAM and HDBS schemes described in [105, 33]. The CAM scheme is

inefficient since it needs multiple interactions between hospitals and cloud server to generate

the aggregated decision-tree, which greatly increases the training cost. HDBS uses the

aggregated dataset for SVM training while PDTCPS uses parallel SVM for training, hence

HDBS incurs more training time than PDTCPS.

Table 2.1 & Table 2.2 also show that our training model generation process incurs

smaller communication cost than the CAM and HDBS schemes.PDTCPS incurs the

least cost because the hospitals only need to send the encrypted training features instead
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of all the instances to the cloud server. Whereas in the CAM scheme, the communication

cost is largely due to the histograms that are sent by the hospitals. Meanwhile, in order to

transform the ciphertext from one encryption form into another, the HDBS scheme requires

multiple interactions between a client and server, which incurs much communication cost.

The tables also show that by using SVM rather than decision tree, PDTCPS achieves

higher accuracy than CAM .

In addition, from Table 2.1 & Table 2.2, we can see that the CAM scheme incurs less

test time than PDTCPS when the dataset size is small. This is expected because the

test time for the CAM scheme is largely based on the height of the decision tree. Thus,

when the dataset is small, the height of the decision tree is also small, which leads to low

test evaluation cost. Whereas in PDTCPS, the number of instances in the dataset has

little impact on the test evaluation cost since it only depends on the number of attributes.

PDTCPS only incurs about 0.035Kbytes for Exp1 and 0.04Kbytes for Exp2 to store a

training model. However, to increase the efficiency for future training model updates, we

may also store the encrypted training feature sets. The reported storage cost for PDTCPS

in Table 2.1 & Table 2.2 shows the storage cost incurred when such feature sets are also

stored.

2.5.3 Search Evaluation

In this subsection, we evaluate the search performance of PDTCPS.

(1) Search Over Encrypted Index

The search operation executed at the cloud server side consists of the inner product

calculation for the nodes contained in the index tree. If a node contains the keyword(s)

in the query, the corresponding bits in both Bloom filters will be 1 thus the inner prod-

uct will return a high value. Figure 2.8 (b) shows that the inner-product computation

time grows linearly with the length of the Bloom filter. This is intuitive because the

cloud server needs to go over all the bits in Bloom filters before computing the final in-

ner product values. Assuming that there are |S̃| = 60 categories, and each category has

500 diseases, then on the average, a query without an encrypted category keyword needs

to search through 30 top level category nodes and 250 2nd-level nodes, then the average
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search time will be (30*1.7+250*0.0067)=53s since each inner product computation takes

6.7 ms with L = 1.2Kbytes and 1.7s with L = 305Kbytes. However, the search time is only

about (250*0.0067)=1.675s with an encrypted category keyword included in the query. The

search time for queries without category keywords can be reduced by using the bed-tree

structure [52] to create more hierarchy for category keywords so that fewer category nodes

need to be searched.

(2) Search Accuracy

In our experiment, we adopt the widely used performance metric, namely false positive,

denoted as FP , to measure the search result accuracy. The false positive rate of a L-bit

Bloom filter with h hash functions can be computed as (1− 1

L
)nh, where n is the number of

keywords inserted into that Bloom filter. The number of the inserted keywords in a Bloom

filter for a disease keyword can be computed as n = 2 ∗ li + 1, where li is the number of

characters of that disease keyword wi.

Figure 2.9(a) shows how the false positive rate of our scheme varies as the number of

inserted keywords changes when L = 1.2Kbytes. One observation is that the false positive

is very low when li is small, i.e. 0.6% at li = 15 which is the average character length of

our disease keywords.

Figure 2.9 (b) shows the performance of our scheme when the length of a Bloom filter is

varied. Although large Bloom filter can better reduce the false positive rate, it may increase

both the search time and the storage cost (since the cloud server needs to store these Bloom

filters in the index tree). Thus, there is a trade-off among the false positive rate, search

time, and the storage cost of our scheme. For example, we can tune the parameters, i.e. L,

li, to specifically fit a particular accuracy and storage requirements.

Therefore, the total accuracy can be further computed by combining both false positives

in the searching model and error rates in the prediction results as follows:

Acctotal = 1− (Pf + (1− Pf ) ∗ Cf ) (2.1)

where Pf is the false positive for the searching model and Cf is the error rate for the training

model. Typically, the Bloom filters are designed to achieve a Pf = 1% and Cf as shown in
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Figure 2.9: False Positive Rate of the Bloom filter. (a) With varying numbers of
keywords. (b) With various Bloom filter lengths.

Table 2.1 & Table 2.2 ranges from 76.3 to 92.9%.

2.6 Summary

In this chapter, we have proposed a Privacy-Preserving Disease Treatment, Complication

Prediction Scheme (PDTCPS), which allows users to conduct privacy-aware searches for

health related questions based on their individual profiles and lab tests results. Our design

also allows healthcare providers and the public cloud to collectively generate aggregated

training models to diagnose diseases, predict complications and offer possible treatment

options. In addition, to enrich search functionality and protect the clients’ privacy, our

scheme can support fuzzy keyword search and query unlinkability. Moreover, PDTCPS also

hides access patterns and hence addresses the security threat via exposed access patterns

identified in previous searchable encryption schemes. Finally, we validate the practicality

of our scheme by evaluating our scheme using two UCI datasets. The results show that

PDTCPS is secure against different adversarial situations, and has better performance

than two existing schemes.
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Chapter 3

Incentivizing High Quality

Crowdsourcing Data For Disease

Prediction (IHESS)

3.1 Background

With the growing need for personalized medical treatments to lower healthcare cost, and the

ease of storing large scale clinical datasets, researchers are keen on developing data mining

methodologies to mine hidden patterns such that they can identify critical factors which

affect disease progression and survival rates and use such information to aid the healthcare

professionals in making better treatment decisions.

However, discovering knowledge [58, 117, 133] in healthcare systems is a herculean yet

critical task since those available raw medical data are widely distributed, heterogeneous in

nature, and voluminous. For example, the Amyotrophic Lateral Sclerosis (ALS) is a fatal

neuro-degenerative disease with significant heterogeneity and can lead to muscle weakness

which gradually impacts the functioning of the body, leading to eventual death. While

Riluzole [3] is the only approved medication for ALS, it merely increases the survival dura-

tion of a patient by a few months and has no effect in improving his quality of life. Thus,

the identification of key factors that affect ALS disease progression and survival rate is
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important for effective medical interventions and for appropriate stratification in clinical

trials [28].

With this dire need for ALS prediction tools in mind, a crowdsourcing competition, the

DREAM ALS Stratification Prize4Life Challenge [4] was held, where solvers were asked to

use 3 months of individual patient level clinical trial information to predict that patient’s

disease progression over the subsequent 9 months. The purpose of this challenge is to enable

better understanding of patient profiles and find a more accurate way of predicting patients’

disease progression and survival rates.

While clinical data mining technology helps to identify hidden patterns within patients’

heathcare data which can aid in developing relevant treatment tools for personalized treat-

ment, many current diagnostic and prognostic tools make decisions based on only a small

number of patient characteristics. For example, many cardiologists and critical care physi-

cians believe that the direct measurement of cardiac function provided by Right Heart

Catheterization (RHC) is enough to guide treatments of certain critically ill patients. How-

ever, there are significant limitations to this type of assessment. Since in the catheterization

laboratory, hemodynamic variables are typically measured at rest with patients in the supine

position, which may not only underestimate the presence and severity of Pulmonary Hy-

pertension (PH) but such measurements also do not accurately reflect the true extent of

hemodynamic compromise. In addition, the collected data sometimes have missing and

noisy values. Thus, data mining researchers need to ensure that high quality data is avail-

able for training any disease prediction model. For higher accuracy model, a large dataset

consisting of sufficient numbers of different categories of patients, e.g. fast, slow and average

ALS patients, needs to be available. Therefore, hospitals need to be encouraged to share

high quality data such that healthcare data mining researchers can produce better models.

In this chapter, we tackle such challenges by developing two tools: first, we propose a

data cleaning & feature selection method which allows healthcare data mining researchers

to clean up the available large scale dataset and identify relevant features which are critical

in predicting the progression and survival rate of any given disease. Secondly, we propose

an incentive mechanism which encourages hospitals to share truthfully high quality data

which can then be aggregated to generate prediction models with higher accuracy rates.
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We demonstrate the effectiveness of our approaches using three large datasets from three

population-based studies, namly ALS [1], RHC [2] and STAR*D [122]. Our experimental

results show that our prediction models yield good performance in ALS slope, ALS &

RHC survival, and STAR*D relapse predictions. Furthermore, we also prove that our

incentive mechanism satisfies two desirable properties: individual rationality and platform

profitability.

In summary, our contributions can be summarized as follows:

• We develop new learning models by combining data cleaning & feature selection meth-

ods with effective machine learning techniques.

• We also design an incentive mechanism to encourage hospitals to share higher quality

data, so that the cloud server can generate more accurate models for clinical use.

• We provide extensive experimental results using both PRO − ACTALS and RHC

datasets to show that our learning models can perform better than some existing pre-

diction tools (e.g. the Cox-survival regression model). In addition, we show that our

incentive mechanism have individual rationality and platform profitability properties.

3.2 Problem Formulation

In this subsection, we first describe our system model. Then, we outline our design chal-

lenges and design goals.

3.2.1 System Model

Our incentive based high-quality eHealth information sharing scheme (IHESS) consists

of two parties: the hospitals and the cloud server, as shown in Fig 4.3. We assume that

there is a 3rd party service provider which utilizes the public cloud server to provide various

disease prediction models to participating hospitals based on the datasets provided by these

hospitals.

• Hospitals: Hospitals first collect patients’ health records with certain costs, where

patients take some tests to produce certain data such as blood sugar and cholestrol
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Figure 3.1: System Model

levels. They also store those data, which are typically noisy with missing values in

certain fields in their private clouds. Then, the private cloud severs use a data cleaning

& feature selection method to process and clean those health records. Next, they per-

form data mining operations over the cleaned data to generate locally trained models.

However, since each hospital only has limited number of patients, its predictions may

not be very accurate. In order to obtain more accurate results, the hospital servers

may upload certain subsets of their health records to a public cloud run by a 3rd

party service provider so that the public cloud server can generate more accurate ag-

gregated models for every participating hospital. While such aggregated model service

is beneficial, hospitals may expose themselves to potential privacy threats by sharing

their data. Thus, hospitals would not be interested in sharing their data, unless this

aggregate service platform provides protection over potential privacy breach and the

hospitals also receive sufficient rewards to cover their cost for collecting such data.

To address privacy concern, the design in [166] can be used by hospital servers to

encrypt their cleaned data before sending them to public cloud and data mining can

be performed on encrypted data. Details are not discussed here for privacy design is

not the focus of this work. In this chapter, we focus more on how different hospitals

can be incentivized to clean up their data so that useful aggregate models can be

generated from their high quality data.
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• Public Cloud Server: After receiving the data, the public cloud server selects a subset

of participating hospitals to generate aggregated models based on an incentive mech-

anism, e.g., the newly selected hospital has a nonnegative utility and provides data

that can increase the utility of the aggregated service platform. The public cloud

server also needs to define appropriate reward functions for the selected hospitals as

well as utility function to evaluate the tradeoffs between the cost of rewarding selected

hospitals, and the improvement in precision and recall of the new aggregated models.

3.2.2 Design Challenges

Although data mining has been increasingly used in the biomedical research community,

it is typically a complex process involving intensive manual and computational tasks to

identify hidden patterns which can aid treatment decisions from large medical datasets

[140]. Such medical datasets typically are collected by healthcare organizations as they

provide individual patient care. Thus, such raw datasets typically contain many features

and have missing or non-numerical values and hence need to be cleaned before they can be

used to generate aggregated training models.

In addition, the collection of medical data for a defined goal is still difficult even in this

era of data explosion. While sharing clinical data with a third party cloud provider is useful

for clinical data mining, this third party is unaware of the cost incurred by an individual

hospital in collecting the various health records. Thus, it is difficult to define a reward

function which can encourage hospitals to not only truthfully share data but also allow the

public cloud server to distinguish high quality data from low quality data.

3.2.3 Design Goals

Our IHESS is designed with the following goals in mind:

(i) Data Cleaning & Feature Selection: Since prediction results are highly dependent on

the completeness of values in the data records and the selected features in the dataset, so

we have designed a data cleaning & feature selection method to refine the data before it is

being used to generate aggregated training models.
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Figure 3.2: Workflow of the Proposed Methods for Disease Predictions

(ii) Incentive Modeling: We have designed an incentive model to encourage high-quality

data sharing with two desirable features:

• Individual Rationality: Every participating hospital whose submitted data have been

accepted will have a nonnegative utility. In other words, the rewards that the selected

hospitals receive will be greater than their resource consumption (e.g., lab tests costs).

• Platform Profitability: The utility of the cloud server should increase when including

new data. In other words, the benefits brought by the participating hospitals should

be larger than the total rewards paid to those hospitals.

3.3 Data Cleaning & Feature Selection

In this subsection, we outline the key stages in our data cleaning and feature selection pro-

cess (DC&FS): (i) raw data processing; (ii) imputation of missing values; (iii) utilizing fea-

ture selection methods to identify and extract important features; (iv) constructing learning

models for performing accurate predictions. The work flow of our proposed methodology to

create useful training models for disease progression and survival rate predictions is shown

in Fig 3.2.

50



www.manaraa.com

3.3.1 Data Cleaning

The goal of the data cleaning step is to remove inconsistent and noisy data and impute

missing data values. The data cleaning operation consists of two steps:

• Removing unrealistic values

• Imputing missing values

In the first step, we remove clinical data, which have unrealistic feature values (e.g.

unrealistic age or weight). In the second step, we first retain only certain features, where

fewer than 50% of their values are missing. Then, we replace any missing value with the

average value obtained from non-missing entry values of that feature. The impact of data

quality on the performance of prediction models will be discussed in section 3.4.

3.3.2 Feature Selection

After data cleaning, we then apply the following two feature selection techniques to assess

which features are more helpful in constructing clinical prediction models.

• Random Forest (RF ) [35, 97]: this is an ensemble classifier based on randomized deci-

sion trees and provides different feature important measures, which can be visualized

by the Gini index scores [137, 71]. This feature importance score provides a relative

ranking of the spectral features and can be used as a general indicator of feature

relevance. Here we run random forest classifier on all features (whose missing rate <

50%) and select useful features based on their Gini index scores.

• Logistic Regression (LR) [63]: this uses maximum-likelihood estimation to compute

the coefficients for all features, which can be used to rank them based on their relative

importance.

As a classifier, random forest method performs an implicit feature selection, using a small

subset of important variables for the classification, leading to its superior performance on

high dimensional data. However, logistic regression works well when the number of features

is limited (e.g., fewer than 100) since it is easy to calculate the coefficient values for all
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Table 3.1: The ALS Functional Rating Scale

The ALS Functional Rating Scale Features

1. Speech

2. Salivation

3. Swallowing

4. Handwriting

5. Cutting food and handling utensils

6. Dressing and hygiene

7. Turning in bed and adjusting bed clothes

8. Walking

9. Climbing stairs

...

features. Thus, in order to further demonstrate our feature selection methods, we conduct

studies using the following datasets:

• The ALS clinical data from the PRO − ACT (Pooled Resource Open-access ALS

Clinical Trials) [1] dataset, which consists of more than 10,700 patients’ records with

6318 features including demographics, discriminated ALSFRS features [43], medical

and family history, respiratory measurements and other general lab data. For the

ALS dataset, we extract features for progression and survival rate predictions.

• The RHC dataset [2] contains data of 5735 patients with 62 attributes, which includes

not only the patients’ characteristics (e.g., age, sex, education, income, medical insur-

ance) but also various lab tests results that describe the severity of patients’ conditions.

For the RHC dataset, we extract features for survival rate prediction.

• The STAR*D dataset [122]: STAR*D is a study involving over 4000 patients to iden-

tify the most effective treatment or combination of treatments for patients diagnosed

with non-psychotic Major Depression Disorder (MDD) which lasted over a period

of seven years. For the STAR*D dataset, we extract features for predicting disease

relapse.

Disease Progression Prediction

For ALS, the cleaning dataset can be divided into two types:

52



www.manaraa.com

Table 3.2: Feature Selection for Progression Prediction

Scheme Prediction Feature Selection Names of Features

UglyDuckling ALS Slope Onset-delta, Trunk, Q1-Speech,
Phosphorus, Q5-Cutting, Leg

Our ALS Slope Random Forest Q1-Speech, Q3-Swallowing,
Weight, ALSFRS-Total

• Static features: contain values of patients’ profiles, e.g., time of onset, first symptoms,

gender, etc.

• Temporal features: contain functional (ALSFRS) measures [43], body weight, lab

test results, etc, where their values are different as time varies.

However, since no one knows exactly which features (patients characteristics) are more

important for ALS disease progression, we conduct feature selection experiments to assess

which features are more helpful in constructing ALS clinical prediction models.

Multiple feature selection algorithms have been designed using the ALS dataset based on

information gains, random forest, etc during the Prize4Life challenge. For example, in order

to predict ALS slopes, the UglyDuckling team [5] selects features based on the information

entropy, where information gain is computed for all variables. The GuanLab team [6] also

selects features based on ALSFRS measures and Forced Vital Capacity (FV C) surveys,

where FV C is the volume of gas that can forcibly be blown out after full inspiration,

measured in liters.

In our work, we choose to focus on patients’ ALS functional rating scale (ALSFRS) fea-

tures (Table 3.1) since they are essential elements of the ALS clinical trials. The ALSFRS

features reflect physical functions in carrying out activities of daily living of ALS patients

(i.e., how well patients speak, swallow, etc). Based on the prediction results obtained using

the random forest classification method, we have selected three features including “Q1-

Speech”, “Q3-Swallowing” and “ALSFRS-Total” from ALSFRS features with highest Gini

index scores, where “Q1-Speech” and “Q3-Swallowing” are the evaluations of the functional

change (e.g., speech, swallowing) of patients over time.

While ALSFRS plays an important role in the diagnosis of ALS, other factors should

also be considered so as to improve the predication accuracy. Thus, we also include the
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Table 3.3: Feature Selection for Survival Rate Prediction

Scheme Prediction Feature Names of Features

Selection

GuanLab ALS Survival Age, ALSFRS-Total, FVC1,
FVC-percent, Q3-Swallowing, Weight

Our ALS Survival Random FVC, FVC-percent, FVC-percent1,
Forest Age, ALSFRS-Total, Onset-delta

Our ALS Survival Logistic FVC, Q8-walking, Q10-respiratory,
Regression Age, ALSFRS-Total, Creatinine

Our RHC Survival Random Cat1, Death, Swang1, Gender,
Forest Race, Hrt1, Card, Ca, Age, Meanbp1

Our RHC Survival Logistic Cat1, Death, Swang1, Gender, Race,
Regression Ninsclas, income, Ca, Age, Meanbp1

Our Star*D Survival Random gender, mdswch1, hwl, ctswch1,
Forest menop, mdsch2ct, mdswch2a, mdaug2a

Our Star*D Survival Logistic gender, mdswch1, mdaug1, ctswch1,
Regression ctaug1, mdsch2ct, mdswch2, mdaug2

“weight” feature since people affected by ALS tend to lose weight. This may be caused by

several factors: (i) they often have difficulty swallowing, (ii) they burn more calories than

unaffected people, and (iii) cells in their intestines may have difficulties extracting nutrients

from the food. The selected features are shown in Table 3.2, where for the “ALSFRS-Total”,

“Q1-Speech”, “Q3-Swallowing”, we have used both their minimum and maximum values

as additional features. Note that logistic regression method is not used for the ALS slope

prediction since such dataset contains many features (more than 100 features) and hence it

is inefficient to extract useful features using this method.

Survival Rate Prediction

(1) For ALS Survival Rate Prediction

• We use random forest classifier to select six features (with highest Gini index values),

which include “FVC”, “FVC-percent”, “FVC-percent1”, “Age”, “ALSFRS-Total”

and “Onset-delta” to generate learning model for ALS survival rate prediction, where

“Onset-delta” is the time between disease onset and the first time the patient was

tested in a trial, “FVC-Percent” is the percentage of normal lung function (exhala-

tion is gentle and not forced), and “FVC-percent1” is the percentage of the volume
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of air forcefully exhaled in one second.

• We also use logistic regression analysis to select useful features, which include “ALSFRS-

Total”, “FVC”, “Age”, “Q8-Walking”, “Q10-Respiratory” and “Creatinine”, where

“Creatinine” in the blood reflects both the amount of muscle a person has and their

amount of kidney function, “Q8-Walking” and “Q10-respiratory” are the evaluations

of the functional change (e.g., walking, breathing) of patients over time.

The selected features are shown in Table 3.3, where for the “ALSFRS-Total”, “FVC”,

“FVC-Percent”, “FVC-Percent1”, “Q8-Walking” and “Q10-Respiratory” features, we have

used both their minimum and maximum values as additional features.

(2) For RHC Survival Rate Prediction

• We select 10 features based on the results using the random forest classification

method, where Gini index scores are computed for all variables. The selected fea-

tures include age, gender, cat1 (primary disease category), ca (none cancer, localized

cancer, metastatic cancer), meanbp1 (mean blood pressure), hrt1 (heart rate), swang1

(right heart catheterization performed within first 24 hours), death (estimation of the

probability of surviving 180 days after admission), race (black, white, other) and card

(cardiovascular diagnosis).

• We also use logistic regression analysis to select important features including age, sex,

race, years of education, income, swang1, ninsclas (type of medical insurance including

private, medicare, medicaid, private and medicare, medicare and medicaid, or none),

cat1, ca, death and meanbp1.

3.3.3 Model Construction

After data cleaning and feature selection, we then generate our learning models for disease

progression and survival rate predictions.
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Disease Progression Prediction

For ALS progression prediction, we apply Gradient Boosted Regression Trees (GBRT )

[5], which performs best in the DREAM ALS Stratification Prize4Life Challenge [4], to

generate our learning model. The idea of GBRT is to add a classifier at a time, so that the

next classifier is trained to improve the already trained ensemble. In other words, GBRT

computes a sequence of simple decision trees, where each successive tree is built based on

the prediction residuals of the preceding tree. The input of the model is the patient’s data

with selected features, and the output is the predicted ALS slope.

In addition, to evaluate the accuracy of a trained model for predicting ALS slope, we

also cluster patients into different groups based on their observed ALS slopes. For example,

based on the observed ALS slopes, the patients could be clustered into three classes, denoted

as:

• For “fast” labeled patients, their ALS slopes are smaller than “-1.1”.

• For “slow” labeled patients, their ALS slopes are larger than “-0.5”.

• The rest patients will be labeled as “average”.

Survival Rate Prediction

Since the survival duration ranges from several months to over a decade from the onset of

symptoms, we also generate learning models for ALS and RHC survival rate predictions

by clustering patients into either the “dead” or “alive” class, where “alive” means that the

patients are still alive after 12 months of being first diagnosed. In our work, we have used

three methods to build the prediction models:

(1) Cox-survival Model

The Cox model [56] is a well-recognized statistical technique for exploring the relation-

ship between the survival of a patient and several predictor variables. The probability of a

patient’s survival rate is called the hazard, which can be denoted as:

Hi(t) = H0(t)× exp(b1Xi1 + b2Xi2 + · · ·+ bkXik) (3.1)
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where {Xi1, ..., Xik} is a collection of predictor variables (e.g., k lab test results) for

patient i and coefficients {b1, ..., bk} are estimated by Cox regression. Thus, the survival

model of one patient can be viewed as consisting of two parts: the baseline hazard function

(H0(t)), which can be computed based on all patients’ clinical data, and the patient’s own

predictor variables.

(2) MTLR Model

While the Cox proportion hazards model [56] has long been used to fit the survival time

of a population, it might not give good predictions on survival times for individuals since

it has ignored many important individual differences among patients. To overcome this

problem, we have used a method called multi-task logistic regression (MTLR) [168], which

directly models the survival function by using a likelihood function that combines multiple

logistic regression models, where each logistic regression model measures the effect of how

the characteristics X of a specific patient affect the chance of survival with the threshold k

at time slice t.

Pθ(T ≥ t|(Xi1, Xi2, . . . , Xim)) = 1/(1 + exp(θ1Xi1 + θ2Xi2 + · · ·+ θmXim + k)) (3.2)

{Xi1, ..., Xim} is a collection of predictor variables (e.g., m important variables) for

patient i and regression coefficients {θ1, ..., θm} are estimated by maximizing a partial

likelihood objective, which depends on the relative ordering of survival time of individuals.

Thus, MTLR provides more intuitive hazard functions rather than force us to choose a

particular hazard function as in the Cox-survival model.

(3) GuanLab Model

Guanlab [6] invents a probabilistic ranking of all training patients based on Kaplan-

Meier (KM) curve [87]. This curve gives an estimation of the survival function across time,

r(t), which is the proportion of the patients that are still alive at time t. After completing

the comparison of all data points, a ranking of the likelihood to die for all patients is

calculated, which can be used to build the learning model.
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3.4 Evaluation

In this subsection, we evaluate our data cleaning and feature selection mechanisms via

measuring the performance of disease progression and survival rate predictions using three

datasets, namely, the ALS, RHC and STAR*D datasets. We also evaluate our learning mod-

els by comparingthem with two other models produced by UglyDuckling [5] and GuanLab

[6], which perform best in predicting ALS slopes and survival probabilities respectively.

3.4.1 Performance Metrics

To assess the prediction performance, the sets of computed slopes A and predicted slopes B

are compared across patients using root mean square deviation (RMSD) [7] and pearson’s

correlation coefficient (PCC) [134]. The RMSD measures the differences between corre-

sponding slope pair values predicted by a model and the values actually observed, which

can be denoted as:

RMSD =
√

(1/n)
∑n

i=1 |ai − bi|2 (3.3)

where n is the total number of instances, ai is the actual ALSFRS slope and bi is the

predicted ALSFRS slope.

In addition, we also use pearson’s correlation coefficient (PCC) to evaluate how well a

prediction model is able to reveal ALSFRS trends. PCC can be computed as follows:

PCC = cov(A,B)/(σAσB) (3.4)

where cov(A,B) is the covariance of A and B and σA, σB are the standard deviation

of A and B respectively. Thus, better predictions lead to a lower value of RMSD but a

higher value of PCC.

3.4.2 Experimental Settings

To evaluate the performance of our schemes, we conduct the experimental evaluations on

three datasets:
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Table 3.4a: Experimental Settings for ALS Progression Prediction of Exp1

Scheme Training Data Fast Slow Average Selected Features

UglyDucking 4835 473 957 3405 Onset-delta, Trunk, Phos-
phorus, Q1-Speech, Leg,
Q5-Cutting

Our (RF) 4838 475 958 3405 Q1-Speech, Q3-Swallowing,
Weight, ALSFRS-Total

• The PRO−ACT [1] dataset contains clinical records from over 10,700 ALS patients

who have participated in 23 phase II/III clinical trials.

• The RHC dataset [2] contains 5735 patients admitted to hospitals in serious condition

with 62 attributes.

• STAR*D dataset [8] enrolls 4041 patients aged 18 to 75 years with 41 clinical sites

(e.g., 18 prirnary and 23 psychiatric care settings).

All our experiments are conducted on a Mac Pro with an Intel Core i5 processor running

at 2.6GHz and 8GB memory.

3.4.3 Impact of Different Selected Features

In this part, we have conducted two experiments (Exp1 & Exp2) to measure the performance

of our learning model with features selected using different methods. For both experiments,

we replace missing values in the datasets with the average values obtained from non-missing

entry values. 80% of the cleaned dataset is used for training and the rest is used for testing.

(1) Disease Progression Prediction

Exp1: For ALS slope prediction, the UglyDuckling team [5] (the winning team) in

the DREAM ALS Stratification Prize4Life Challenge [4] used the criteria that they will

only include patient records where each patient’s record has values for over 66.7% of their

selected features. In this experiment, we apply the same criteria and find 4838 patients’

records based on our selected features.

From the results (Table 3.4b), we can see that our method performs much better than

UglyDuckling (improved by 18%) with fewer selected features.

(2) Survival Rate Prediction
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Table 3.4b: ALS Progression Prediction Results of Exp1

Scheme Train Feature Train Test RMSD PCC Accuracy

Size Size Cost Cost

GBRT 4835 10 1.461s 0.005s 0.549 0.367 40.5%
(UglyDuckling)

GBRT (Our(RF )) 4838 7 1.445s 0.004s 0.521 0.384 58.3%

Table 3.5a: Experimental Settings for ALS Survival Rate Prediction of Exp2

Scheme Training Dead Alive Selected Features

Prediction Data

GuanLab 7308 2603 4705 Age, ALSFRS-Total, FVC1,
FVC-percent, Q3-Swallowing, Weight

Our (RF) 7413 2645 4768 FVC, FVC-percent, FVC-percent1,
Age, ALSFRS-Total, Onset-delta

Our (LR) 7538 2743 4795 FVC, Q8-walking, Q10-respiratory,
Age, ALSFRS-Total, Creatinine

Exp2: In this experiment, we use three datasets to verify our feature selection methods,

which is a crucial step for ensuring the quality of predictive models.

• For ALS survival rate prediction, the GuanLab team [6] used the criteria that they

would include any patient’s record that has values for over 16.7% of their selected

features. Using the same criteria, (i) we extract 7413 patients’ data as the training

data based on the results using the random forest classification method (Gini index);

(ii) we also extract 7538 patients’ data as the training data based on the results

computed by logistic regression algorithm. (Table 3.5a)

• For RHC survival rate prediction, we use both random forest (Gini index) and logistic

regression methods to select important features (Table 3.6a).

• For STAR*D survival rate prediction, (i) we select 8 features based on the results using

the random forest classification method, where Gini index scores are computed for all

variables. The selected features includes gender, mdswch1 (leaving lev1 med switch),

hwl (HRS weight loss), ctswch1 (leaving lev1 switch to ct), menop (menopausal), md-

sch2ct (leaving lev2 with ct med switch), mdswch2a (leaving lev2a med switch) and

mdaug2a (leaving lev2a med augment); (ii) we also use logistic regression analysis to

select useful features [122], which includes gender, mdswch1, mdaug1 (leaving lev1
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Table 3.5b: ALS Survival Rate Prediction Results of Exp2

Scheme Feature Train Test Features Train Test Accuracy

Selection Size Size Size Cost Cost

GuanLab(guan) 7308 1260 10 3.718s 0.025s 72.3%

Cox(guan) 7308 1260 10 3.524s 0.032s 70.6%

MTLR(guan) 7308 1260 10 5.113s 0.046s 71.4%

GuanLab(our) RF 7413 1260 6 2.984s 0.019s 72.9%

GuanLab(our) LR 7538 1260 6 3.043s 0.020s 63.8%

Cox(our) RF 7413 1260 6 2.841s 0.023s 70.9%

Cox(our) LR 7538 1260 6 2.889s 0.024s 60.4%

MTLR(our) RF 7413 1260 6 4.672s 0.043s 72.1%

MTLR(our) LR 7538 1260 6 4.752s 0.042s 63.2%

Table 3.6a: Experimental Settings for RHC Survival Rate Prediction of Exp2

Scheme Training Dead Alive Selected Features

Prediction Data

Our (RF) 4588 2854 1734 Cat1, Death, Swang1, Gender, Race,
Hrt1, Card, Ca, Age, Meanbp1

Our (LR) 4588 2854 1734 Cat1, Death, Swang1, Gender, Race,
Ninsclas, Income, Ca, Age, Meanbp1

med augment), ctswch1, ctaug1 (leaving lev1 augment with ct), mdsch2ct, mdswch2

(leaving lev2 no ct med switch) and mdaug2 (leaving lev2 no ct med augment). (Ta-

ble 3.7a)

The experimental results are shown in Table 3.5b, Table 3.6b and Table 3.7b. From the

results, we can see that the MTLR model can produce more accurate results for survival

rate predictions than the Cox model. It is reasonable, since the MTLR mechanism can

Table 3.6b: RHC Survival Rate Prediction Results of Exp2

Scheme Feature Train Test Features Train Test Accuracy

Selection Size Size Size Cost Cost

GuanLab 4588 1147 62 13.923s 0.142s 71.6%

GuanLab Random Forest 4588 1147 10 2.583s 0.029s 66.3%

GuanLab Logistic Regression 4588 1147 10 2.528s 0.028s 69.2%

Cox 4588 1147 62 12.859s 0.163s 68.4%

Cox Random Forest 4588 1147 10 2.426s 0.031s 62.3%

Cox Logistic Regression 4588 1147 10 2.396s 0.031s 65.6%

MTLR 4588 1147 62 16.267s 0.186s 69.7%

MTLR Random Forest 4588 1147 10 4.257s 0.041s 65.4%

MTLR Logistic Regression 4588 1147 10 4.132s 0.042s 67.8%
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Table 3.7a: Experimental Settings for Star*D Survival Rate Prediction of Exp2

Survival Scheme Training Data Selected Features

Rate Prediction

STAR*D Our (RF) 3151 gender, mdswch1, hwl, ctswch1,
menop, mdsch2ct, mdswch2a, mdaug2a

STAR*D Our (LR) 3200 gender, mdswch1, mdaug1, ctswch1,
ctaug1, mdsch2ct, mdswch2, mdaug2

capture the time-varying effects of features by modeling the survival distribution as the

joint output of a sequence of dependent regressors. We also find that GuanLab method

performs better than the Cox and MTLR mechanisms (improved by 3% in average) . We

suspect that this is due to the fact that the GuanLab [6] team builds their model based on

a complete ranking of all patients (e.g., a ranking of likelihood to die for all patients) using

KM-curves [87]. With this probabilistic ranking, different features would have different

weights when generating the prediction model.

From Table 3.6b we can see that for RHC survival rate prediction while the results of

using the whole 62 features is more accurate than those with 10 features, the training and

testing costs are significantly reduced when only using 10 selected features. In addition, we

also find that compared with the results obtained using the logistic regression algorithm,

• For ALS dataset, our learning models perform better (improved by 10% in average)

when the features are selected based on the results of the random forest method.

• For RHC and Star*D datasets, they perform worse (reduced by 3% and 4% in average)

when we select features based on the results of the random forest method.

Therefore, the feature selection method should be chosen as follows: (i) If the dataset

(e.g., RHC, Star*D) has limited number of features (e.g., fewer than 100), then the logistic

regression method performs well in selecting useful features; (ii) If the dataset (e.g., ALS)

has large number of features, then the random forest classification method (Gini index)

works well for feature selection.
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Table 3.7b: Star*D Survival Rate Prediction Results of Exp2

Scheme Feature Train Test Features Train Test Accuracy

Selection Size Size Size Cost Cost

GuanLab Random Forest 3151 800 8 2.178s 0.023s 76.8%

GuanLab Logistic Regression 3200 800 8 2.067s 0.021s 79.9%

Cox Random Forest 3151 800 8 1.892s 0.022s 68.5%

Cox Logistic Regression 3200 800 8 1.986s 0.027s 72.6%

MTLR Random Forest 3151 800 8 3.447s 0.034s 75.6%

MTLR Logistic Regression 3200 800 8 3.452s 0.036s 79.4%

Table 3.8a: Experimental Settings for ALS Slope Prediction of Exp3 & Exp4

Scheme Feature Selection Train Size Fast Slow Average

GBRT(Exp3) Random Forest 2235 491 964 780

GBRT(Exp4) Random Forest 2132 324+400 725 683

3.4.4 Impact of Data Quality

In this part, we conduct four experiments (Exp3 & Exp4 & Exp5 & Exp6) to evaluate how

data quality affects the performance of our proposed mechanisms, where {Exp3, Exp4} and

{Exp5, Exp6} are conducted for disease progression and survival rate predictions respec-

tively. For Exp3 and Exp5, we only use patients’ data that do not have any missing values

of the selected features. However, since the number of non-missing data is very limited, so

in Exp4 and Exp6 we also generate some synthetic data to build a more balanced training

set, where each class contains approximately the same number of data records.

(1) Disease Progression Prediction (Table 3.8a)

Exp3: In this experiment, we have extracted 2235 ALS patients’ data with non-missing

values for training.

Exp4: We first use 10-fold cross validation on the 2235 ALS patients’ data with no miss-

ing values. Then, we combine all those testing instances from these 10-fold cross validation

experiments which are correctly classified to produce a dataset of 1732 patients’ data (with

Table 3.8b: ALS Slope Prediction Results of Exp3 & Exp4

Scheme Train Test Feature Train Test RMSD PCC Accuracy

Size Size Size Cost Cost

GBRT (Exp3) 2235 260 7 0.916s 0.003s 0.509 0.394 67.3%

GBRT (Exp4) 2132 260 7 0.908s 0.003s 0.504 0.401 73.5%
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Table 3.9a: Experimental Settings for ALS Survival Rate Prediction of Exp5 & Exp6

Scheme Feature Selection Train Size Dead Alive

GuanLab(Exp5) Random Forest 4432 1597 2835

GuanLab(Exp6) Random Forest 4328 1152+1000 2176

MTLR(Exp5) Random Forest 4432 1597 2835

MTLR(Exp6) Random Forest 4328 1152+1000 2176

324 “fast”, 725 “slow”, 683 “average”). Next, we generate 400 synthetic patients’ data

which belongs to the “fast” class by randomly generating a value for each selected feature

using a uniform distribution with the mean and 1 standard deviation of that particular

feature computed from the 324 “fast” instances. Finally, we form a balanced dataset with

2132 patients data to train a new prediction model.

The results are shown in Table 3.8b. From the results we can see that the accuracy

of our models in Exp3 is much higher than those in Exp1. It is because although disease

progression can be roughly predicted based on the ALSFRS scores, the accuracy of the

predictions varies significantly from patient to patient. Thus, it is not as effective to simply

replace any missing data with the mean value since ALSFRS could be highly affected by

the patient’s family history, gender, age, etc. In addition, we also find that compared with

Exp3, the accuracy of our methods has increased by 6% in Exp4 which uses a more balanced

dataset where some data records are generated synthetically based on carefully selected real

data which is classified correctly.

(2) Survival Rate Prediction (Table 3.9a)

Exp5: In this experiment, we have extracted 4432 ALS patients’ data with non-missing

values for training.

Exp6: We use the same process (as described in Exp4) to produce 3328 ALS patients’

data (with 1152 “dead”, 2176 “alive”) from the 4432 patients’ data with no missing values.

Then, we generate 1000 synthetic “dead” patients’ data using the same method and produce

a balanced dataset with 4328 patients data to train a new prediction model.

The results are shown in Table 3.9b. From the results we can see that compare with

Exp2, the performance has been improved when we use non-missing data. Meanwhile, from

the results we also find that compared with Exp5, the accuracy of our methods in Exp6

has increased by 2% on the average as a result of having higher quality and more balanced
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Table 3.9b: ALS Survival Rate Prediction Results of Exp5 & Exp6

Scheme Train Test Feature Train Test Accuracy

Size Size Size Cost Cost

GuanLab(Exp5) 4432 1260 6 2.574s 0.023s 73.8%

MTLR(Exp5) 4432 1260 6 3.931s 0.037s 73.2%

GuanLab(Exp6) 4328 1260 6 2.353s 0.025s 74.6%

MTLR(Exp6) 4328 1260 6 3.784s 0.034s 74.4%

data.

In addition, we also run similar experiments for the RHC dataset (see our technique

report), and the result trends are similar as the ones obtained using the ALS dataset. It

shows that higher quality data yields better prediction models. Therefore, to obtain more

high-quality data with fewer missing values, one needs to design an incentive scheme to

encourage different hospitals to collect higher quality data. Thus, in the next section, we

present an incentive scheme which we design for this purpose.

3.5 Proposed Incentive Scheme

In this subsection, we first give the definitions of various notations we have used in our

work. Then, we describe an overall framework of our incentive based high-quality ehealth

information sharing scheme (IHESS) before we dwelve into the detailed explanations.

Notations:

• Sensitivity (SN) - SN = TP/(TP + FN), where TP is all positive instances that

are classified as positive and FN is all positive instances that are not classified as

positive.

• Specificity (SP ) - SP = TN/(TN +FP ), where TN is all non-positive instances that

are not classified as positive and FP is all non-positive instances that are classified

as positive.

• S - S = SN ∗ SP ranges from 0 to 1.

• Smin - The minimum value of S, denoted as min(S).

• R - A predefined reward factor for every selected “average” instance.
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• C - The cost for every submitted “average” instance.

• α - A predefined target for the achieved utility of a cloud server.

• K - A scaling factor used to make sure that the cloud server is profitable when it

includes new data.

• wf , ws - Scaled reward factors for “fast” and “slow” instances.

• kf , ks - Scaled frequency factors for “fast” and “slow” instances.

• N - The maximum number of instances in any “fast/slow/average” class in the ag-

gregated training set.

• Nf (Hi)
∗, Ns(Hi)

∗, Na(Hi)
∗ - The accepted “fast”, “slow” and “average” instances of

the submitted instances of hospital Hi.

• |Nf |, |Ns|, |Na| - The total number of “fast”, “slow” and “average” instances that

have been selected to generate the training model, where max(|Nf |, |Ns|, |Na|) = N .

• Tf (Hi)
∗, Ts(Hi)

∗, Ta(Hi)
∗ - The submitted “fast”, “slow” and “average” instances of

hospital Hi, where max(|Tf (Hi)
∗|, |Ts(Hi)

∗|, |Ta(Hi)
∗|) = N .

3.5.1 Overall Framework

The main goal of our framework is to provide a practical incentive mechanism which en-

courages truthful data sharing. Fig 3.3 is an overview of our designed scheme which shows

the information provided by the hospitals, and the cloud server.

Every hospital Hi first sends its collected data T (Hi)
∗={Tf (Hi)

∗,Ts(Hi)
∗,Ta(Hi)

∗} to

the public cloud. Upon receiving data from hospital Hi, the public cloud will first check if

those data can be accepted. If it is, then the public cloud will compute the related reward

and send it back to Hi.

Our IHESS is designed with the following desirable properties:

• Individual Rationality: The hospital Hi whose submitted data are accepted by the

cloud server will have an utility greater than 0. That is, UHi = Rewards(Hi) −

Cost(Hi) > 0.
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Figure 3.3: System Overview

• Platform Profitability: The utility of the IHESS platform is greater than 0 when it

includes new data, which can be denoted as UP = Benefit(P )−Reward > 0.

3.5.2 Detail Design of IHESS

Here, we present more detailed descriptions of the proposed IHESS.

Costs for Participating Hospitals:

During the data collection, every hospital Hi incurs its own cost, which is largely dependent

on the number of patients, the number of lab tests conducted on each patient, the costs of

the lab tests, etc. Thus, the cost for the hospital Hi can be calculated as follows:

Cost(Hi) = (|Tf (Hi)
∗| ∗ kf + |Ts(Hi)

∗| ∗ ks + |Ta(Hi)
∗|) ∗ C (3.5)

where we have set kf > 1 > ks since the “fast” ALS patients need to take lab tests

more frequently than those “slow” and “average” patients.

Reward Function for Participating Hospitals:

The main challenge of designing an incentive mechanism for data sharing is that partici-

pating hospitals are more prone to sending noisy or unreliable data (i.e., labeled patients

wrongly) to the cloud server if they have received with very limited rewards. To avoid
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such behavior, the public cloud needs to design an appropriate reward function to ensure

individual rationality.

Since the cost incurred by each hospital is a function of the number of patients so the

reward function should be a function of the total number of accepted patients’ records

from every hospital Hi. Meanwhile, the reward function is also designed based on the

performance (e.g., S) of aggregated models so that every hospital Hi could receive more

reward if it sends more truthful data (i.e., label patients correctly and improve S) to the

cloud server. In addition, since data gathered from the “fast” and “slow” ALS patients are

more useful than those from the “average” patients, so the cloud server also sets different

reward factors for patients from different classes to encourage higher quality data sharing.

Thus, the reward function for a hospital Hi is chosen to be as follows:

Reward(Hi) = (|Nf (Hi)
∗|wfkf + |Ns(Hi)

∗|wsks + |Na(Hi)
∗|)R ∗ S (3.6)

where the values of R, wf , kf , ws and ks are determined in advance. Here we have set

wf > ws > 1 since the “fast” and “slow” ALS patients are more useful in generating the

prediction models.

Finally, the utility of hospital Hi can be computed as:

UHi = Reward(Hi)− Cost(Hi) = (|Nf (Hi)
∗|wfkf + |Ns(Hi)

∗|wsks + |Na(Hi)
∗|)R ∗ S−

(|Tf (Hi)
∗| ∗ kf + |Ts(Hi)

∗| ∗ ks + |Ta(Hi)
∗|) ∗ C

(3.7)

Benefit Function for the Cloud Server:

The cloud server determines its own benefit function to ensure that adding truthful data

into the aggregated dataset will always bring benefit to the platform. Meanwhile, it is

obvious that with more and more data accepted, the marginal benefit brought by the new

data will become less and less, which leads to a decreasing marginal revenue. Thus, in

order to reflect the platform’s diminishing returns on increasing number of participating

hospitals, the cloud server uses logarithmic term (e.g., log(1+t) where t is a ratio of current
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S over a target α value) to implement its benefit function. We choose t = S/α to ensure

that the decision made by the cloud server in rejecting unreliable data can help to drive S

towards the target α value. Besides, to ensure platform profitability, the cloud server also

includes a system related scaling factor, K. Therefore, the benefit function of the cloud

server is chosen as follows:

Benefit(P ) = K ∗ log(1 + S/α) (3.8)

where K and α are predefined so as to ensure that the cloud server is profitable when

it includes new data.

Based on the benefit and reward functions, the cloud server can then compute its utility

as:

UP = Benefit(P )−Reward = K ∗ log(1 + S/α)−

(|Nf | ∗R ∗ wf ∗ kf + |Ns| ∗R ∗ ws ∗ ks + |Na| ∗R) ∗ S
(3.9)

Workflow of the IHESS:

Every hospital Hi first sends T (Hi)
∗={Tf (Hi)

∗,Ts(Hi)
∗,Ta(Hi)

∗} to the cloud server. After

receiving the data from Hi, the cloud server will check whether its utility increases when

including those data. If it is, then the cloud server will add those data into the aggregated

dataset, generate the aggregated model and send reward to the hospital Hi. Otherwise, the

cloud server will neglect those submitted data, and will not send any reward to the hospital

Hi.

3.5.3 Properties of the Incentive Model

In this part, we prove that our incentive scheme (IHESS) has the properties of individual

rationality and platform profitability.

Individual Rationality:

If data of the participating hospital Hi has been rejected, then the corresponding reward

will be 0. Thus, we only need to consider the case when the data from a hospital is accepted.

69



www.manaraa.com

The utility of the participating hospital Hi can be computed as follows:

UHi = Reward(Hi)− Cost(Hi) = (|Nf (Hi)
∗|wfkf + |Ns(Hi)

∗|wsks + |Na(Hi)
∗|)R ∗ S

−(|Tf (Hi)
∗| ∗ kf + |Ts(Hi)

∗| ∗ ks + |Ta(Hi)
∗|) ∗ C

∵ max(|Tf (Hi)
∗|, |Ts(Hi)

∗|, |Tf (Hi)
∗|) 6 N,

∴ UHi > (|Nf (Hi)
∗|wfkf + |Ns(Hi)

∗|wsks + |Na(Hi)
∗|)R ∗ S − (kf + ks + 1)N ∗ C

> (wfkf + wsks + 1)R ∗ S − (kf + ks + 1)N ∗ C

> (wfkf + wsks + 1)R ∗ Smin − (kf + ks + 1)N ∗ C

if R > (kf+ks+1)N∗C
Smin∗(kfwf+ksws+1) , then UHi > 0

(3.10)

From the equation, we can see that with an appropriate R value, our incentive mecha-

nism can guarantee that every participating hospital Hi will have a non-negative utility if

its data is accepted.

Platform Profitablility:

Based on the benefit and reward functions, the utility of the cloud server can be computed

as:

UP = Benefit(P )−Reward = K ∗ log(1 + S
α )− (|Nf |wfkf + |Ns|wsks + |Na|)R ∗ S

⇒ (UP (S))′ = K
(1+S

α
)∗ln2∗α − (|Nf |wfkf + |Ns|wsks + |Na|)R

If(UP (S))′ > 0, then K
(1+S

α
)∗ln2∗α − (|Nf |wfkf + |Ns|wsks + |Na|)R > 0

⇒ K
(1+S

α
)∗ln2∗α > (|Nf |wfkf + |Ns|wsks + |Na|)R

⇒ K
(α+S)∗ln2 > (|Nf |wfkf + |Ns|wsks + |Na|)R

⇒ K
(|Nf |wfkf+|Ns|wsks+|Na|)R∗ln2 − α > S

∵ S ∈ [0, 1],∴ K
(|Nf |wfkf+|Ns|wsks+|Na|)R∗ln2 − α > 1

⇒ K > (1 + α) ∗ (|Nf |wfkf + |Ns|wsks + |Na|)R ∗ ln2

(3.11)

Thus for the cloud server, we can find that the utility of the cloud server will always

increase when new reliable data is added if we set K as (1+α)∗(wfkf +wsks+1)R∗N ∗ ln2.
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3.5.4 Incentive Model Evaluation

Datasets Generation:

In this part, we conduct Exp7 to evaluate the effectiveness of our incentive mechanism in

encouraging hospitals to share high quality data which can help to create better aggregated

training models for disease progression and survival rate predictions.

Exp7: In this experiment, we generate synthetic datasets which contain both good and

bad patients’ data. The way we generate these datasets is described as follows:

(1) Disease Progression Prediction

For ALS slope prediction, we first create 2132 synthetically generated instances (with

724 “fast”, 725 “slow” and 683 “average” instances) using feature values selected from

a uniform distribution with the mean plus one standard deviation of the feature values

extracted from that 1732 patients’ data we described in Exp4. Then, we add these 2132

instances to the balanced dataset with 2132 instances to form a dataset with 4264 high

quality instances. Next, we also generate another 4264 synthetically generated instances of

poorer quality data using the mean and 2 standard deviation of the feature values (with

1448 “fast”, 1450 “slow”, 1366 “average”). Subsequently, we divide these 8528 instances

into unequal portions and assume each portion comes from a different participating hospital.

(2) Survival Rate Prediction

• For ALS survival rate prediction, we first select the balanced dataset in Exp6, which

contains 4328 patients’ data. Then, we generate 4328 poor quality synthetic instances

(with 2152 “dead” and 2176 “alive”) using the same method (in Exp7(A)). Next, we

divide these 8656 instances into unequal portions and assign them to the participating

hospitals.

• For RHC survival rate prediction, we first use 10-fold cross validation on the 4588

patients’ data with no missing values. Then, we only select 3196 records (1642 “dead”,

1554 “alive”) that have been correctly classified. Next, we generate 3196 poor quality

synthetic instances using the same method. Finally, we divide these 6392 instances

into unequal portions and assign them to the participating hospitals.
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Table 3.10a: Experimental Settings for IHESS

Participants Data Ratio Prediction Data Size Accuracy

ALS Slope Prediction 2000 72.0%
H1 100 % good ALS Survival Rate Prediction 2000 73.4%

RHC Survival Rate Prediction 1500 72.9%

ALS Slope Prediction 1600 65.6%
H2 75 % good ALS Survival Rate Prediction 1600 68.7%

RHC Survival Rate Prediction 1100 68.2%

ALS Slope Prediction 1328 57.6%
H3 50 % good ALS Survival Rate Prediction 1456 63.3%

RHC Survival Rate Prediction 1192 63.6%

ALS Slope Prediction 1600 66.9%
H4 75 % bad ALS Survival Rate Prediction 1600 68.9%

RHC Survival Rate Prediction 1100 67.5%

ALS Slope Prediction 2000 71.5%
H5 100 % bad ALS Survival Rate Prediction 2000 73.7%

RHC Survival Rate Prediction 1500 73.2%

After being assigned its data portion, every hospital then generates its own local model

by selecting 90% of its assigned data as the training set, and the remaining 10% as the

testing set, which is shown in Table 3.10a. We also assume that the cloud server receives

data from the hospitals in the following arrival pattern: H2, H3, H1, H5 and H4.

Experimental Results:

From the result (in Table 3.10b), we can find that the cloud server will first accept the data

submitted by H2 since this is the first piece of data received by the cloud server. The cloud

server will also select H1 because the utility of the platform increases if the cloud server

includes the data from H1 in the aggregated training set. However, the cloud server will

not select hospitals (e.g., H3, H4, H5) since their data cannot improve the utility of the

platform. Thus, our IHESS can encourage more truthful data sharing by sending rewards

to those participating hospitals which share higher quality data.

3.6 Summary

In this chapter, we have proposed useful learning models for Amyotrophic Lateral Sclerosis

(ALS), Right Heart Catheterization (RHC) and depression disorder relapse (STAR*D)

predictions, which can be used to aid efficient clinical care. We provide two major contri-
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Table 3.10b: Aggregated Model Generation

Prediction Participants Data Ratio Data Size Accuracy Aggregated Data

H2 75 % good 1600 65.6 % T (H2)
∗

ALS H3 50 % good 1328 57.6 % T (H2)
∗

Slope H1 100 % good 2000 72 % T (H1)
∗, T (H2)

∗

Prediction H5 100 % bad 2000 71.5 % T (H1)
∗, T (H2)

∗

H4 75 % bad 1600 66.9 % T (H1)
∗, T (H2)

∗

H2 75 % good 1600 68.7 % T (H2)
∗

ALS H3 50 % good 1456 63.3 % T (H2)
∗

Survival Rate H1 100 % good 2000 73.4 % T (H1)
∗, T (H2)

∗

Prediction H5 100 % bad 2000 73.7 % T (H1)
∗, T (H2)

∗

H4 75 % bad 1600 68.9 % T (H1)
∗, T (H2)

∗

H2 75 % good 1100 68.2 % T (H2)
∗

RHC H3 50 % good 1192 63.6 % T (H2)
∗

Survival Rate H1 100 % good 1500 72.9 % T (H1)
∗, T (H2)

∗

Prediction H5 100 % bad 1500 73.2 % T (H1)
∗, T (H2)

∗

H4 75 % bad 1100 67.5 % T (H1)
∗, T (H2)

∗

butions, namely (i) identify meaningful features from all features collected during current

clinical trials for efficient and accurate predictions, and (ii) design an incentive model to

encourage participants to share their more truthful and high quality medical data so that

aggregated training models can yield high accuracy. The experimental results indicate

that our proposed methods would achieve good performance on those real-world clinical

datasets.
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Chapter 4

Explainable Deep Learning Based

Medical Diagnostic System

(DL-MDS)

4.1 Background

The rapid development of computing technologies makes it easier to collect patients’ med-

ical data. For example, Electronic Health Record (EHR) systems contain various types

of patients’ information including their demographics, diagnosis codes, medications, and

laboratory test results [59, 94], which offer a richer data to accelerate clinical research and

predictive analysis[81, 154, 51].

Figure 4.1: Information on Multiple Medical Web Sites

Although remarkable progress has been made to use medical datasets for clinical re-

search, many challenges and open questions remain. One obstacle is that unlike other data
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sources, medical data is inherently noisy, irregularly sampled and heterogeneous, which

make it difficult to integrate useful data from multiple sources and produce predictive clin-

ical models for real-world applications. For example, in Fig 4.1 different medical websites

would provide different information (such as risk factors) for a same disease (e.g., “hyper-

tension”).

Figure 4.2: An illustrative example of a QA for community-based health services,
where a patient has used a transition word “but” in his question

The other is that it is challenging for the community-based health services to understand

latent relationships and efficient representations of medical concepts in the health-oriented

questions, which are mainly caused by the following reasons: (i) The vocabulary gaps among

diverse health patients make the data inconsistent sometimes. For example, patients may

use different medical terms in their questions even when they have suffered from the same

disease; (ii) Patients may also describe their problems in short questions with some negative

or transitional words. Fig 4.2 illustrates one question answer (QA) example, where the

existing community-based health services cannot understand patients’ questions and hence

provide wrong answers. According to our user study on 18,000 questions that we have

crawled for the experiments, health seekers’ questions can be abstracted into four main

categories, as shown in Table 4.1.

Therefore, an important question naturally arises: how can one develop a comprehen-

sive wellness system, which not only understands users’ health-oriented questions but also

extracts useful patterns from heterogeneous data sources to make more accurate disease

predictions. In order to alleviate this problem, many researchers and institutions have uti-

lized state-of-the-art machine learning and statistical techniques. Among those works, deep

learning methods have increasingly been applied in healthcare informatics, where they have
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Table 4.1: Categories of Health Seekers’ Questions

Categories of Clinical Questions Examples

(1) The clinical questions contain multi-
ple keywords related to symptoms but not
explicitly mention the exact disease name

My blood sugar tested high about 6
months ago. I am having problems with
my lower legs and feet. Sometimes my feet
tingle. What is wrong?

(2) The clinical questions mention the dis-
ease name but contextualized in interroga-
tive scenarios

I’ve been dizzy, lightheaded, and unable to
exhale fully for weeks and its gotten worse.
Have you ever heard this from asthma?

(3) The clinical questions are short and
contain some negative or transitional con-
texts

Went to the emergency room with asthma
however the doctor said I had acid reflux.

(4) The clinical questions contain multi-
ple disease keywords (related & unrelated),
where the patients ask about one undiag-
nosed disease but who already have been
diagnosed with another disease

I have been diagnosed as diabetic a few
years ago. Recently, I have fatigue and
exertional dyspnoea. Could I be suffered
from lung disorder? Do I need treatment?

proved to have a strong representation ability to learn the complicated data structure and

thus demonstrate good prediction performance on several tasks, such as medical concepts

representation [51], predictive modeling [46, 114], etc. While existing deep learning methods

are beneficial, the trained learning models or classifiers would perform badly on decision

making when the training datasets are heterogeneous.

Thus, in this chapter, we investigate and propose an end-to-end deep learning based

medical diagnosis system (DL-MDS) using multiple sources, which allows authorized users

to conduct searches for disease diagnosis. In order to integrate the expert knowledge from

multiple sources, we have designed a knowledge extraction framework, which can capture

as many features as possible to characterize diseases. For example, online medical websites

can be mined to extract reliable contents that can be included in the learning models to

improve the overall performances of the system. Our DL-MDS consists of three compo-

nents: (i) medical diagnosis modules that can provide disease predictions; (ii) a topic model

module that can capture informative keywords for different diseases; (iii) a query process-

ing module that learns patients’ queries via a LSTM model with a convolutional neural

network (CNN) based word embedding method. We evaluate our proposed methods us-

ing real-world data. Our experimental results show that our proposed system yields good

performance on patients’ queries processing and medical diagnosis.

In summary, our contributions are as follows:
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• We design a medical knowledge extraction framework to collect useful data from

multiple data sources.

• We propose an end-to-end deep learning based medical diagnosis system (DL-MDS)

to allow authorized users to conduct searches for disease diagnosis based on their own

personalized queries.

• We provide extensive experimental results using real-world data to show that our

system is accurate and widely applicable.

4.2 Problem Formulation

A primary goal of precision medicine is to develop learning models, which can predict

patients’ health status or diagnose their illnesses. In this chapter, we have designed an end-

to-end deep learning based medical diagnosis system (DL-MDS), which allows authorized

users to conduct searches for disease diagnosis based on their personalized questions. In this

section, we first outline some challenges and design goals. Then, we describe our system

model.

4.2.1 Design Challenges

Different from other application domains (e.g., image and speech analysis), the problems

in healthcare are more complicated. For example, the diseases are highly heterogeneous

which make it hard for physicians to completely understand their causes and how they

progress. In addition, the healthcare data are highly ambiguous and noisy, where the

names of diseases may vary from different websites. For example, the disease “croup” can

be named as “laryngotracheobronchitis” on other medical website. Thus, it is challenging

to combine medical data extracted from different websites.

Furthermore, discovering efficient representations of medical concepts also has been a

key challenge in a variety of applications. For example, existing systems have difficulty in

dealing with patients’ questions especially for the synonym scenarios where patients may

use different terms “shortness of breath” or “breathless” in the questions to refer the same
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Figure 4.3: System Model

semantic “dyspnea”.

4.2.2 Design Goals

To address the challenges above, we design a medical diagnosis system with the following

goals in mind:

(1) Medical Knowledge Integration: Medical data extracted from multiple sources are

ambiguous, noisy and not well-structured, so we design a medical knowledge integration

framework to fuse such information for training models generation.

(2) A deep learning based medical diagnosis system (DL-MDS): it can be used to aid

efficient clinical care, where authorized users can conduct searches for medical diagnosis. It

consists of three parts: (i) disease diagnosis modules; (ii) a topic model module; and (iii) a

query processing module.

4.2.3 System Model

We assume that there is a 3rd party service provider which deploys DL-MDS to provide

disease diagnosis service for the clients. The system model is depicted in Fig 4.3.

(1) Clients: Clients refer to those who wish to conduct searches for disease diagnosis

based on their personal profiles.

(2) Service Provider: A 3rd party service provider can utilize a public cloud server to

provide DL-MDS that can predict patients’ health status based on their submitted queries.

The system works as follows:
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(i) At the initial phase, we first extract useful information from heterogeneous data

sources. Then, we propose a deep learning based medical diagnosis scheme (DL-MDS) to

infer possible disease given the questions of patients, which consists of three components:

(a) Medical Diagnosis Modules: as for the medical diagnosis, we first collect disease

information from professional medical websites. Then, a similarity matching algorithm will

be applied to generate an aggregated dataset where the information of same diseases from

multiple sources will be linked together. Next, we separate diseases into different clusters

based on their ICD-10 codes and utilize machine learning techniques to generate a medical

diagnosis module for every disease cluster.

(b) A Topic Model Module: in order to explore key information in the questions, we

extract informative keywords to generate a topic module, which can (i) capture the relational

connections among questions and diseases; (ii) provide model interpretation and improve

the prediction performance.

(c) A Query Processing Module: we first extract medical questions from healthcare

web blogs. Then, we apply a CNN-based word embedding method, at a sentence level to

transform patients’ queries into word-vectors. Next, we combine those word-vectors with

the topic module and train a deep learning module based on the semantics extracted from

those questions.

(ii) Once DL-MDS is deployed, clients can send search requests based on their personal

profiles (e.g., symptoms, risk factors). After receiving the search request, the system will

first use the query processing module to analyze the question and find the related disease

cluster. Then, it will launch a medical learning module stored in the corresponding cluster

for diagnosis prediction and send answers back to the client.

4.3 Important Building Blocks

Before we present the detailed description of our newly designed system, we first discuss

some of the techniques used in this work.
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4.3.1 Word & Sentence Embedding

There have been many methods of deriving word embeddings in the NLP community.

Recently, a word count-based model named GloVe [127] has been introduced, which outper-

forms existing models on several tasks including word similarity, named entity recognition,

etc. While these models are beneficial, they neglect word order information. Thus, in or-

der to tackle such sequence learning problem, Le and Mikolov [96] introduced a paragraph

vector, where a sentence or a paragraph is represented by a vector and trained to predict

the words in the document. In addition, in [89] Kim et al. proposed a neural network

architecture, which uses the linguistic information in the Convolutional Neural Network

(CNN). Instead of putting word in its sequential context, this model considered word and

its n-gram sequences, which can preserve the long distance information in the sentence.

4.3.2 Deep Learning

Convolutional Neural Network (CNN) [98] is a type of feed-forward artificial neural net-

work, which is modeled after the brain structure. Recently, with the availability of efficient

GPU computing, CNN models have been shown to be effective for NLP tasks, and have

achieved great success for various tasks such as information retrieval [135], sentence model-

ing [84], etc. Furthermore, a special kind of feed-forward neural network named Recurrent

Neural Networks (RNNs), which can capture the underlying structure in sequential data,

have been applied to many areas such as text classification [93], natural language processing

(NLP ) [159], etc. However, traditional RNNs suffer from vanishing and exploding gradient

problems. To handle these limitations, different variants of RNN have been proposed. For

example, Long Short-term Memory (LSTM) [76] is a particular type of Recurrent Neural

Network (RNN) [112] that works slightly better in learning long-term dependencies, owing

to its more powerful update equation and some appealing backpropagation dynamics.

4.4 DL-MDS Scheme

In this section, we will present more detailed descriptions of our DL-MDS (depicted in

Fig 4.4), which provides a way for clients to diagnose their diseases based on their own
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Figure 4.4: DL-MDS Overview

personalized queries.

4.4.1 Disease Diagnosis Modules Generation

In our work, we first design a medical knowledge extraction framework to collect reliable

contents from multiple online medical websites. Then, we include the mined contents to

generate the disease diagnosis model.

1. For each disease, we first extract its related symptoms and risk factors from multiple

websites.

2. Then, we integrate the extracted data by matching their related medical terms. While

it is convenient to use ICD-10 and SNOMED-CT codes to conduct the matching process,

the performance is not good since every professionally named disease may have multiple

ICD-10 and SNOMED-CT codes.

Thus, in order to link extracted disease terms, we not only use their ICD-10 and

SNOMED-CT codes, but also consider their semantic similarities from keyword-based and

content-based knowledge. In our work, we design an algorithm to measure similarities

among extracted medical terms as follows:

(1) For each disease term Ti from a web page in a medical website, we first convert

it into a word vector WVi using pre-trained work embedding models (e.g., Word2Vec)

and measure the semantic similarity of this vector WVi with a target vector DVk, which is

generated based on Dk (one of the diseases in the disease training set) and set the similarity

score as S1i (Eq(4.8)), where (WVi · DVk) is the dot product of two vectors and ||WVi||2 is
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Figure 4.5: A Lung Cancer Related Question

the length of a vector.

S1i = WVi·DVk
||WVi||2||DVk||2

(4.1)

(2) We also extract the first M sentences from Wikipedia for this term Ti and convert

each sentence (e.g., jth) into its corresponding vector, denoted as SVij . We do the same for

the term Dk Next, we measure the similarity of sentence vectors {SVi1, ..., SVij , ...}, and set

the average similarity score as S2i.

(3) Next, we compute the similarity score between this term Ti and Dk as follows:

SimilarityTi = αS1i + (1− α)S2i (4.2)

Two words that are similar may be two different illnesses, e.g., “varicella” and “varico-

cele” but two different words may represent the same illness, e.g., “bedsore” and “decubi-

tus”. We choose α such that content based similarity is more important than the keyword

based similarity. Thus, we want αS1min+(1−α)S2max > αS1max+(1−α)S2min , where S1min ,

S1max , S2min and S2max are the minimum and maximum values of S1i and S2i respectively.

(4) Finally, for each Dk, we select top 5 medical terms {Tk1, ..., Tk5} (from each medical

website) with highest similarity scores and check if they have the same ICD-10 or SNOMED-

CT code as Dk. For many cases, one of the 5 terms will have matching ICD-10 or SNOMED-

CT code as Dk. Then, we can merge the symptoms and risk factors from the web page

associated with that matched term, say Tk∗ to the Dk entry.

After using the similarity matching algorithm above, we can generate an aggregated

dataset by integrating medical knowledge from different websites. In the dataset, every
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disease Di has M1 symptoms and M2 risk factors, where each symptom will be labeled

with different levels (i.e. the higher level means such symptom is more unique for the

corresponding disease), denoted as {Di||(sympt1, level1), (sympt2, level2), ...||rfactor1, ...}.

3. Next, we separate the diseases in the integrated dataset into different clusters by

mapping their top1 ICD-10 code (e.g., 1st letter) to a disease categorization structure. For

example, diseases with ICD-10 codes starting from “J” will be grouped into “respiratory”

disease cluster. Finally, we use a logistic regression method to generate a disease diagnosis

module for each cluster.

4.4.2 Topic Model Module Generation

Problem Statement

Patients may ask different questions even if they suffer from the same disease. Human beings

can easily understand their questions by capturing important sentences with informative

keywords within their questions. For example, for the question illustrated in Fig 4.5, readers

understand that it is a lung cancer related question due to some informative keywords such

as “ct-scan”, “’benign” and “lung cancer” in the 1st and 2nd sentences.

Thus, we want to design a model that can conduct similar performance of human beings

(interpret the contributing factors such as important sentences and keywords in the input

data). Specifically, given the input sentences in a user’s question, our pre-trained model

within our topic model module can identify important sentences with their associate score

vectors and also identify informative keywords. In this subsection, we demonstrate how to

extract important sentences and informative keywords in patients’ questions via a LSTM

model with a convolutional neural network (CNN) based word embedding method (shown

in Fig 4.6).

Informative Representations Extraction via CNN based Word Embedding

(1) Sentence Matrix Layer (Layer1)

The inputs to the network are raw sentences that need to be translated into real-valued

feature vectors, which will be processed by subsequent layers of the network. Specifically,
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each input is a sentence s treated as a sequence of words: s = {word1, . . . , word|s|}, where

the mapping from words to their word embeddings is performed by using Word2Vec or

Skip-gram. Hence, for each input sentence s we build a sentence matrix X1:|s| where each

row corresponds to a word embedding vector. For example, a sentence of length |s| can be

expressed as:

X1:|s| = X1 ⊕X2 ⊕ . . .⊕X|s| (4.3)

where Xi is a n-dimensional vector of the ith word (wordi) in the corresponding sentence

and ⊕ represents the concatenation operator.

(2) Convolutional Layer (Layer2)

The aim of the convolutional layer is to capture patterns, i.e., discriminative word

sequences that are common among the training instances of each disease cluster. In order

to form a richer representation of the data, our model applies M filters that work in parallel

to generate multiple feature maps. For example, in Fig 4.6, we slide 2 filters over the word

matrices, where the first one slides over 2 words each time and the second one slides over

3 words each time. For each convolution filter Fk ∈ Rh×n, we generate a new feature map,

where h is the length of the sliding window and n is the size of the input embedding. For

each sliding window Xi:i+h−1, we compute:

CF ik
= f(Wk ∗Xi:i+h−1 + bk), (4.4)

where ∗ denoted the convolution operation between an input matrix and a filter, f

is an element-wise nonlinear transformation, Wk is the weight factor, Xi:i+h−1 is a ma-

trix slice of size h along the rows, and bk is the bias. Then, filter Fk is applied to all

possible windows in the sentence, {X1:h, . . . , X|s|−h+1:|s|}, to generate the characteristic

mapping CFk = [CF 1
k
, . . . , C

F
|s|−h+1
k

]. Note that each component is the result of comput-

ing an element-wise product between a row slice of X and a filter matrix Fk. After this

step, we can get M characteristic mappings, where each filter will generate one mapping

correspondingly.

(3) Pooling Layer (Layer3)
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Figure 4.6: Topic Model Generation

The outputs from the convolutional layer are then passed to the pooling layer, whose

goal is to aggregate the information and reduce the representation. Since both average and

max pooling methods exhibit certain disadvantages: (i) in average pooling, all elements of

the input are treated equally but we may want to give more weights to certain elements; (ii)

the max pooling method may lead to overfitting on the training set. Thus, we have used

both K-max pooling [84] and average pooling to generate local alignment representations,

which contain important information of the corresponding questions.

Finally, the output of the pooling layer will be fed into a LSTM model.

Important Sentences Extraction via LSTM

Since not every sentence in the input questions is useful for the prediction task, we extract

important ones using a LSTM model, where each time step of the model takes a sentence

as an input.

Thus, to identify important sentences we need to select influential time steps, which can

be evaluated based on their corresponding gradient variables. By studying those gradients in

the networks, we can gain some insights into the internal mechanisms and identify important

sentences. For example, at time step t, the model takes a sentence as input xt, and updates

the hidden state ht−1 to ht using:

ht = g(Wxt + Uht−1 + b), (4.5)

where W and U are weight variables and g is a nonlinear activation function. Thus, in
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Figure 4.7: Back-propagation

order to infer the importance of a time step, it is necessary to explore the gradient variables

such as δW and δU , since high values for these variables indicate this time step is important

for the final prediction task.

Before we describe the computation process, we first give the definitions of various

notations we use:

• at represents the input activation

• it represents the input gate variable

• ft represents the forget gate variable

• ot represents the output gate variable

• CLt represents the cell state

• · represents the inner product

• ⊗ represents the outer products

• σ represents the sigmoid function: σ(x) = 1
(1+e−x)

• � represents the element-wise product or Hadamard product

During a forward propagation process, given the inputs we can compute at, it, ft, ot,

CLt and ht for each time step t. In this work, we derive the network gradients analytically

based on the back-propagation computation from the cell outputs all the way to the cell

inputs (shown in Fig 4.7). Thus, in a LSTM time step t, we can compute the gradients

weights (δWt, δUt) as follows:
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Table 4.2: Top 10 Informative Keywords for A Liver Disorder Disease

Disease Top 10 Informative Keywords

Liver Disorder liver, respiratory, kidney, esophagus, pancreas,
cardiomyopathy, aorta, bowel, aneurysm, clot

δWt = [δat � (1− tanh2(at)), δit � it � (1− it), δft � ft � (1− ft),

δot � ot � (1− ot)]T ⊗ xt
(4.6)

δUt = [δat � (1− tanh2(at)), δit � it � (1− it), δft � ft � (1− ft),

δot � ot � (1− ot)]T ⊗ ht−1
(4.7)

where all necessary variables can be computed via Algorithm 1: (i) at step1, we compute

{δot, δCLt}; (ii) at step2, we compute {δat, δit, δft}.

Algorithm 1 Gradients Computation

1: Input : ForwardPass CLt = it � at + ft � CLt−1; ht = ot � tanh(CLt);
2: (1) step1 : Given δht, Compute δot, δCLt
3: (i) δot = δht · ∂ht∂ot

= δht · tanh(CLt);

4: (ii) δCLt = δht · ∂ht
∂CLt

= δht · ot · (1− tanh2(CLt))
5: (2) step2 : Given δCLt, Compute δit, δft, δat
6: (i) δit = δCLt · ∂CLt∂it

= δCLt · at · it · (1− it);
7: (ii) δft = δCLt · ∂CLt∂ft

= δCLt · CLt−1 · ft · (1− ft);
8: (iii) δat = δCLt · ∂CLt∂at

= δCLt · it · (1− a2t );

Topic Model Module Construction

To allow our query processing module to better understand users’ questions, we incorporate

different question representations to identify key information. Specifically, we find important

keywords by considering: (i) the similarity of keywords in the corresponding sentence with

the disease labels based on their tf-idf values; (ii) the importance of each sentence, which is

calculated based on Algorithm 1. As such, we define an attention weight for each keyword

wordi of a disease c, awi, using the following equation:

awi =
∑N
j=1 SCj∗tf ij∗simic

TF i
, (4.8)

where N is the total number of sentences that belongs to the disease c, SCj is the
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Figure 4.8: Query Processing Module

important score of jth sentence, tf ij is the occurrence of keyword wordi in the jth sentence,

simic is the similarity score between wordi and disease label c and TF i is the total number

of occurrences of wordi.

With such attention weights, we can identify important sentences and keywords asso-

ciated with each disease cluster. Thus, we can generate a topic model module (TM) with

multiple clusters, where each cluster represents a disease type and contains informative key-

words. For example, Table 4.6 is one topic model cluster for a liver disorder disease, which

contains 10 identified informative keywords (ordered by their attention weights).

4.4.3 Query Processing Module Generation

Here, we describe how we train a query processing module which can consider both the

common and specific features of patients’ questions with the help of the topic model module

such that the learnt query processing module understands similar disease keywords in related

patients’ queries and hence can direct these queries to relevant medical diagnosis modules

for personalized disease prediction.

We first separate patients’ medical questions in the training set into different clusters

based on their suffered diseases, where each cluster can be seen as a sub-population with

similar patients. Then, we apply a CNN-based word embedding method to turn sentences

in patients’ queries into word vectors that can be fed into a LSTM model, which learns the

semantic connections among related sentences. The detailed training procedure is described

as follows:
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1. We extract patients’ real-world questions of each disease from web blogs.

2. Since unlike other domains where the data are clean and well-structured, healthcare

data are highly heterogeneous and are prone to significant noise. Thus, in our work, we use

the following two rules to remove the unrelated questions: (1) Check if the question’s title,

content or answers contain the target disease keywords; (2) Check if the question’s author

has joined the target disease community.

3. We then separate the filtered questions into different clusters based on their related

diseases.

4. Next, we collate all patients’ questions and generate user-centric vector-representations

and use them to train a query processing module (as shown in Fig 4.8). In our work, we

apply a CNN architecture for sentence-level analysis, where the sentence representation

vector is followed by a fully-connected layer with multiple “sliding window filters”.

(1) Layer 1 (Sentence Matrix): In this layer, we employ a word embedding model (e.g.,

Word2Vev or Skip-gram) to convert an input sentence s = {word1, ..., word|s|} into a matrix,

where each row of the matrix corresponds to one word. After the word matrix layer, we have

de dimensional pre-trained embeddings for each word in the sentence, which are vertically

concatenated into the matrix X1:|s| = [X1, . . . , X|s|], where |s| is the length of the sentence.

(2) Layer 2 (Convolution): In the second layer, we perform convolution operations on the

matrices using M filters, which aims to extract patterns, i.e., discriminative word sequences

found within the input sentences. The filters are used to operate on the sliding window of

length h to generate a new feature. For instance, a sliding window Xi:i+h−1 generates the

feature via a filter Fk according to the following equation:

CF ik
= f(Wk ∗Xi:i+h−1 + bk), (4.9)

where Wk is the weight factor, bk is an offset term and f is a non-linear function. This

filter is applied to all possible windows in the sentence, {X1:h, . . . , X|s|−h+1:|s|}, to generate

the characteristic mapping CFk = [CF 1
k
, . . . , C

F
|s|−h+1
k

].

(3) Layer 3 (Pooling): The output (e.g., M characteristic mappings) from the convolu-

tional layer are then passed to the pooling layer, whose goal is to keep the most important
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features and reduce the representation. Due to the limitations of the pooling methods, the

specific pooling function we used includes K-max pooling [84] and mean-pooling.

(4) Layer 4 (Similarity): The similarity layer is used to compute the similarity scores

between sentences within a question and the keywords within a topic model cluster of a

particular disease type.

For example, given an output from Layer 3 of an input sentence (e.g., vector represen-

tations xt) and ith cluster of the topic module TMi, a sentence-topic similarity score can

be computed as follows:

sim(xt, TMi) =
∑|TMi|
j=1 (TMj

i ·x
T
t )∗aw

j
i

|TMi| , (4.10)

where TM j
i and awji are the word vector and attention weight of informative keyword

wordj in the ith cluster of the topic model module respectively. We apply the computation

on the whole topic model TM = {TM1, TM2, · · · } and get a vector, where each component

of the vector represents a similarity score between that sentence and the corresponding

disease.

5. Finally, all intermediate vectors from Layer 3 and the similarity score features are

concatenated together and fed into a two layer LSTM model, which learn long-term corre-

lations among words.

4.5 Performance Evaluation

In this section, we apply our model to real clinical data extracted from the clinical web

sites and blogs. We first describe our experimental settings and the data we use. Then, we

provide the evaluation analysis.

4.5.1 Experimental Settings

To evaluate the performance of our scheme, we conduct experimental evaluations on real-

world data:

(1) A disease training set which contains 2200 popular searched diseases (with profes-

sional medical names), with 1526 symptoms and 526 risk factors, where each of these 2200
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diseases, its ICD-10 and SNOMED-CT codes together with limited symptoms and risk fac-

tors is listed. For symptoms related to a disease, we also label each of them with different

levels (0-4), where a higher level means such symptom is more unique for the corresponding

disease.

(2) A test set crawled from the website 1, which contains 400 most frequently searched

symptom and risk factor lists with their corresponding correctly diagnosed diseases to evalu-

ate our medical diagnosis modules. Each instance in the test set contains a list of symptoms,

risk factors and an ordered list of expected diseases denoted as {sympt list||rfactor list

||expected disease list}). The first disease in that ordered list is the most likely disease

associated with those symptoms and risk factors.

(3) Medical Websites: website 1 (contains 2049 diseases), website 2 (contains 1854 dis-

eases), etc. which contains multiple expert knowledge such as disease descriptions, symp-

toms, risk factors, treatments, etc. We would like to integrate the information gleaned

from these websites with the disease-symptom-risk factor database to generate an aggre-

gate dataset for training our disease diagnosis modules.

(4) Medical Web Blogs: website 3, etc, which contains multiple medical questions.

In the experiments, we set α as 0.3 in the similarity matching process and use 2 pooling

layers (one is for k-max pooling and the other is for average pooling) in the query processing

module. We also select 512 hidden units in our LSTM model and trained it for 300 epochs,

where each epoch is defined as the process of feeding the whole training set to a model. All

our experiments are conducted on a Mac Pro with an Intel Core i5 processor running at

2.6GHz and 8GB memory.

4.5.2 Experimental Evaluation

Similarity Matching Method Evaluation

First, we conducted Exp1 to measure the performance of our proposed similarity matching

algorithm.

Exp1: In this experiment, we use the disease dataset, which contains 2200 popular

diseases. Then, we apply the proposed similarity matching method to link those 2200

91



www.manaraa.com

(a) Sentences Interpretation of a
Liver Disorder Related Question

(b) Sentences Interpretation of a
Lung Cancer Related Question

(c) Sentences Interpretation of a
Heart Attack Related Question

Figure 4.9: Sentences Interpretations

Table 4.3: Evaluation of Similarity Matching Method

Web Site # of diseases # of web pages Accuracy

Website 1 2200 2049 93.0%

Website 2 2200 1854 89.4%

diseases with 2049 and 1854 web pages extracted from website 1 and website 2 respectively.

We manually check the results (in Table 4.3) and find that for those 2200 diseases, our

proposed similarity matching algorithm can achieve

(1) 93.0% accuracy for website 1. Among those 1847 diseases matched correctly, 1421

matched diseases have exactly the same name on the web pages while 426 matched diseases

have slightly different names. For example, the “anorexia” disease is named as “fastidium”

on website 1. An error example is as follows: “gingivostomatitis” is matched to a web page

for “vincent-stomatitis” in website 1 but these are two different diseases.

(2) 89.4% accuracy for website 2. Similarly among 1770 correctly matched diseases,

(a) Allergy Related Query (b) Miscarriage Related Query (c) Respiratory Related
Query

Figure 4.10: Patients’ Clinical Questions
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Table 4.4: Evaluation of Medical Diagnosis Modules

Evaluation Model Accuracy

NB 31.8%
Exp2 RF 45.3%

LR 64.6%

NB 53.2%
Exp3 RF 63.9%

LR 86.1%

1386 diseases are matched with the exact same names on the web pages while 384 diseases

are matched with slightly different names.

We generate a revised training dataset by integrating the symptoms and risk factors

extracted from website 1 and website 2 to the disease training set. We also asked medical

experts to set the level values for newly included symptoms for each diease. This aggregated

dataset is used to train medical diagnosis modules in Exp2 & Exp3.

Medical Diagnosis Modules Evaluation

In this subsection, we conduct two experiments (Exp2 & Exp3) to evaluate our simple

disease diagnosis modules by utilizing expert knowledge database.

Exp2: We use three different methods to train the diagnosis modules, including Naive

Bayes (NB), Logistic Regression (LR) and Random Forest (RF ). In this experiment, we

only use the symptoms and disease lists information from the aggregated dataset produced

from Exp1 and evaluate the trained modules by checking if the top1 disease included in the

expected disease list also ranks as the top1 in our diagnose disease list.

Exp3: Instead of only using symptoms as in Exp2, we use both symptoms and risk

factors to train diagnosis modules.

The results are shown in Table 4.4. From the results, we can clearly observe that

logistic regression model performs the best among all the learning models. This is because

in the logistic regression model, a higher level symptom or a more unique risk factor will

be associated with a higher coefficient value, which indicates its marginal contribution to

the predicted risk. Meanwhile, by comparing the results in Exp2 and Exp3, we find that

it is better to use both symptoms and risk factors to conduct disease diagnosis since some
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(a) Words Interpretation of a Live Disorder
Related Question

(b) Words Interpretation of a Lung Cancer
Related Question

Figure 4.11: Patients’ Clinical Questions

diseases may have similar symptoms but different risk factors.

Interpretation Results Evaluation

(1) Interpretation Through Important Sentences

Using the techniques explained in Section 4.4.2, we can identify important sentences in

our input data (medical blog questions) based on the computed gradients. For example, for

a liver disorder related question (shown in Fig 4.9(a)), by computing the gradients for the

corresponding time steps, we find that the 2nd and 4th sentences are more important than

the others for the final prediction. Fig 4.9(b) and Fig 4.9(c) provide two more examples of

questions for other diseases such as lung cancer and heart attack.

(2) Interpretation Through Important Keywords

According to Section 4.4.2, we can capture informative keywords in the input medical

questions based on their attention weights. For example, for liver disorder and lung can-

cer related questions (shown in Fig 4.11(a) & Fig 4.11(b)), we can extract (i) “abdomen”,

“stomach”, and “liver” for a liver disorder disease; (ii) “cancer”, “aorta”, and “lung” for a

lung cancer disease, which are more informative keywords than others for the final predic-

tions.

(3) Topic Model Module Evaluation

Therefore, by analyzing all medical questions we can obtain most informative keywords

for every disease, which can be used to conduct the topic module. For example, Table 4.5

shows top 10 extracted informative keywords for liver disorder, heart disease and diabetes
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Table 4.5: Top 10 Informative Keywords for different Diseases

Disease Top 10 Informative Keywords

Liver Disorder liver, respiratory, kidney, esophagus, pancreas,
cardiomyopathy, aorta, bowel, aneurysm, clot

Heart Disease heart, heartbeat, cardiac, coronary, artery,
arrhythmia, stroke, kidney, cardiomyopathy,

cardiogram

Diabetes diabetes, cholesterol, arthritis, hypoglycemia,
cancer, insulin, pancreatitis, neuropathy,

metformin, celiac

diseases respectively.

Query Processing Module Evaluation

In order to train and test the query learning module, we extract 18,000 questions from

6 different disease clusters (i.e., “diabetes”, “pregnancy”, “heart”, “lung & respiratory

disorders”, “cancer”, “general health”), where each disease cluster contains 3000 clinical

questions on the average. We refer to these questions as the clinical question dataset.

Then, we conduct Exp4 to evaluate the performance of our query processing module.

Exp4: We first randomly choose 2 groups of disease clusters where users often post

questions on more than one cluster, namely (i) G1 consists of “diabetes”, “pregnancy” and

“heart” clusters and (ii) G2 consists of “diabetes”, “lung & respiratory disorders”, and

“cancer” clusters. For each cluster, we select 1000 clinical questions as training set and 500

clinical questions as testing set. Then, we filter the questions by removing the unrelated

ones (described in Section 4.4.3). Next, based on the processed dataset, we use different

word embedding methods together with the LSTM structure to conduct this experiment:

(1) Word2Vec tool (GloVe) on the GoogleNews dump: We adopt a pre-trained word vector

model to map each question sentence into a vector. This pre-trained word vector model

contains 3 million words and hence include all the words typically used in patients’ queries;

(2) CNN based word embedding (in Section 4.4.2); (3) CNN based word embedding with

the topic module (TM) (in Section 4.4.3).

The results for both G1 and G2 datasets are tabulated in Table 4.6. From the results,

one can see that using the convolutional neural network (CNN) based word embedding
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Table 4.6: Impact of Different Word Embedding

Group Embedding Method Train Size Test Size Accuracy

G1 Word2Vec 2186 1031 58.2%

G2 Word2Vec 2402 1145 66.5%

G1 CNN only 2186 1031 71.1%

G2 CNN only 2402 1145 79.6%

G1 CNN + TM 2186 1031 85.8%

G2 CNN + TM 2402 1145 87.4%

(a) A Diabetes Related Question (b) A Diabetes Related Question

Figure 4.12: Diabetes Related Questions

method improves the accuracy by about 13%. It is because that the CNN based word

embedding method allows the LSTM model to efficiently learn important syntactic and

semantic aspects of the inputs when appropriate widths of the convolution filters (e.g.,

bigrams or three-grams) are used.

In addition, we also find that the performance improves by 11% on average if we include

the topic model module in our query processing model. It is because the topic model module

can deal with questions, which contain multiple disease keywords (both related and unre-

lated). For example, for a diabetes related question (shown in Fig 4.12(a)), which contains

both diabetes and pregnant related keywords, one can see that it contains more important

diabetes related keywords such as “insulin”, “diabetes”, ”eat”, and “food”, and hence our

query processing model incorporating topic model can produce the correct prediction.

Compare With the Existing Website

In this subsection, we conduct Exp5 to compare the performance of our system with the

existing professional medical website 4, where patients can receive responses about potential

illnesses they may have based on the symptoms they submit.
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(a) Response of Allergy Query (b) Response of Miscarriage Query(c) Response of Respiratory Query

Figure 4.13: Questions Responses

Table 4.7: Compare With the Existing Website

Model Method Train Size Test Size Accuracy
(top1)

Accuracy
(top3)

DL−MDS CNN + TM 9474 2196 91.6% 93.8%

Website 4 2196 72.9% 76.5%

Exp5: We first randomly select 2000 clinical questions for each disease cluster. Then, we

filter out those unrelated questions and set the remaining ones as the training set. Overall,

we have 9474 clinical questions for 6 disease clusters in our training set. We also select 500

clinical questions for every disease cluster, filter unrelated ones and set the remaining as the

testing set. Overall, we have 2196 clinical questions for 6 disease clusters in our test set.

Next, we use CNN based word embedding method to generate the sentence based word

vectors and insert them into a LSTM based learning model. Finally, we use the testing set

to measure the performance of our system and the medical website 4, where the accuracy

is evaluated by checking if the top1 or top3 returned diseases match with the correct ones

that the clinical questions should match to.

The results are shown in Table 4.7. From the results, we can see that our system has

better performance in handling the clinical questions than the professional medical website

(by 18%). We also find that the accuracy improves when we measure the accuracy by

checking if the correct disease is among the top3 predicted disease clusters instead of only

considering the top1 disease cluster. We looked into the limitations of the website 4 which

prevent them from handling certain questions. We found that such website cannot handle

the following three types of clinical questions:
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(1) Type1: If the clinical question contains multiple keywords related to symptoms

but not the exact disease related keywords, then the website 4 cannot infer the correct

disease. For example, an allergy related question (Fig 4.10(a)) on the medical website

returns “Stuffy nose” (Fig 4.13(a)) as its returned disease, which is not as accurate as what

our model predicts.

(2) Type2: If the clinical questions contain multiple disease keywords (related & un-

related), where the unrelated keywords could be some general medical terms which occur

more often than the related ones, then there is a high probability that the unrelated clinical

disease will be the top1 disease returned by the website 4. For example, for a miscarriage

related question (Fig 4.10(b)), the medical website will diagnose such query as “Back pain”

(Fig 4.13(b)) since the keyword “pain” occurs more often than other medical terms. It

seems like the medical website does not consider semantic correlated terms together but

our model is able to learn such reasoning to return the right diagnosis.

(3) Type3: If the clinical questions are short and contain some negative or transitional

contexts, then the website 4 cannot understand given queries and may provide wrong an-

swers. For example, for an respiratory related question ((Fig 4.10(c))), the medical website

will cluster such query as an “Asthma” disease (Fig 4.13(c)).

Compare With Existing Work

In this subsection, we conduct Exp6 to compare the performance of our system with the

existing work SCDL [120], which is used to infer the possible diseases by giving the questions

of health seekers. The SCDL system is constructed via alternative signature mining and

pre-training incrementally. It consists of two key components: (i) the first part globally

mines the discriminate medical signatures from raw features; and (ii) the second part learns

the inter-relations between the raw features and their signatures.

Exp6: In this experiment, we first select a dataset (DataIII) from [120], where 20% of

the data (in DataIII) are selected for testing. Then, we use the same process as mentioned

in Exp5 to train our query processing module. Next, we use the selected test set to measure

the overall accuracy of our scheme and compare the result with the SCDL scheme.

From the results (Table 4.8), we can see that our scheme performs slightly better than
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Table 4.8: Compare With Existing Work

Model Embedding Method Data Size Accuracy

DL−MDS CNN + TM 1587 93.69%

SCDL 1587 91.48%

[1]The results of the SCDL scheme are extracted from [120];

SCDL. It is because we have used a two layer LSTM model, where the first layer will act as a

feature extractor and the second layer will learn more correlations among dominant features.

In order to learn the limitations of our scheme, we also look through all the test cases and

find that our scheme performs poorly when the clinical questions contain multiple disease

keywords (related & unrelated), where the patients ask about one undiagnosed disease but

who already have been diagnosed with another disease. For example, for a heart disease

related question “I recently got my blood tests back and am not sure if I have ‘heart disease’

in the classical meaning of the phrase or just a bad reading which need to be addressed.

I am a recently turned 60 year old man and was diagnosed with Diabetes almost 2 years

ago.”, our scheme produces “diabetes” as the top rank disease while “heart disease” is in the

Top 3 list. In addition, we also find that the authors in [120] do not consider the following

two scenarios in their SCDL scheme, which can be handled by our DL-MDS: (i) it is

difficult to prove that SCDL can deal with type1 questions (described in Section 4.5.2)

since such type of questions is not included in their datasets; and (ii) in order to improve

their performance, the authors in [120] have designed a negation filtering approach, where

questions that contain some negative or transitional contexts will be removed. However,

the authors do not show if their SCDL scheme can deal with such type of questions in their

.

Discussion

By looking into those wrongly predicted cases, we find that the our query learning model

still cannot handle the following case: if the question contains only general words or multiple

important keywords related to different diseases, then there is a high probability that it will

be predicted wrongly. For example, for a diabetes related question (shown in Fig 4.12(b)),

it will be predicted wrongly since it includes multiple informative keywords (e.g., “breast”,
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“chest”, “ovarian”, “pregnancy”, “obesity”, “diabetes”) associated with different diseases.

4.6 Summary

In this chapter, we have proposed a deep learning based medical diagnosis system (DL-

MDS), which can be used to aid efficient clinical care, where authorized users can conduct

searches for medical diagnosis. One of our major contributions is that we have designed

a medical knowledge extraction framework to collect useful data from multiple sources, so

that we can further generate medical diagnosis models. The other is that we have generated

a deep learning based model, which allows authorized users to conduct searches for medical

diagnosis based on their personalized queries.
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Chapter 5

New Attacks on RNN based

Healthcare Learning System and

Their Detection & Defense

Mechanisms

5.1 Background

The coming age of the science of machine learning (ML) coupled with advances in compu-

tational and storage capacities have transformed its technology landscape. For example,

ML models have proved to be very efficient in classifying images, as shown by the impres-

sive results of deep neural networks on the ImageNet [12] Competition. Meanwhile, many

real-world applications also require effective machine learning algorithms that can learn

invariant representations from time-series datasets. Deep Neural Networks (DNNs) have

achieved great success in various tasks, including but not limited to image classification

[90], speech recognition [75], machine translation [24], and autonomous driving [47]. For

example, pre-trained Recurrent Neural Networks (RNN) [50, 49] have been proposed to

extract meaningful features from a large amount of EHR data which can be used to create

models for disease diagnosis, disease progression or making early treatment decisions by
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clinicians.

However, training these models requires very large datasets and is quite time consuming.

Thus, instead of building from scratch, many ML systems are “composed” of an array of

heterogeneous components, denoted as primitive learning modules (PLMs), which are often

pre-trained on massive amounts of data and provide modular functionalities (e.g., feature

extraction). Thus, with a large collection of PLMs on large and challenging datasets that

are released by many research institutions (e.g., Model Zoo [15], Keras application [13],

etc.), even a student without much computer science background can built a full-fledged

medical system, which can ultimately contribute to better personalized healthcare quality.

While using PLMs is efficient and beneficial, researches have recently discovered that

such PLMs [147, 68] are vulnerable to two types of attacks: (i) attackers can add carefully

crafted perturbations to the inputs of the targeted model to affect the prediction perfor-

mance. For example, attacks have been conducted on the RNN medical models by modifying

the important information within a sequence of medical data such that the changes are not

noticeable. (ii) most PMLs that are provided by third parties lack proper vetting to ensure

their safe operations. For example, attackers could create substitute models based on re-

sponses received from cloud-based ML systems with their carefully crafted queries to avoid

having to pay for services of cloud-based ML systems.

Thus, to prevent such security risks of reusing publicly available PLMs in ML system

development and make deep neural networks more robust to adversarial attacks, recent work

has proposed several defensive algorithms [125, 79, 92, 164, 172]. Those defenses can be

grouped under three different approaches: (i) training the target classifier with adversarial

examples, called adversarial training [147, 68]. (ii) modifying the training procedure of the

classifier, e.g., defensive distillation [126], and (iii) quantizing neural network weights and

activation functions into low bit-width [165, 130, 161, 21].

However, all these approaches have limitations. For example, Carlini et al. [40] have

shown that defensive distillation which requires changing and retraining the target classifier

does not significantly improve the robustness of neural networks. Meanwhile, some of those

defenses require adversarial examples to train the model and are devised with specific attack

models in mind, which are not effective against new attacks. This motivates us to find better
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methods to defend these attacks.

In this chapter, we demonstrate two types of harmful threats (in sections 5.3 & 5.4) to

RNN-based ML systems by introducing attack methods which can trick such ML systems

to output wrong prediction results. For the first attack, we propose an efficient and effective

framework to generate adversarial samples with minimum perturbations on input medical

sequences. For the second attack, instead of using adversarial samples, we propose a novel

attack strategy, which is to randomly add gradient noise to adjust recurrent weights, where

the gradients noise are propagated through a set of important weight vectors until those

features associated with the modified weights become insignificant during training and hence

produce a ML model which generates wrong classification labels for targeted classes.

In addition, in section 5.5.1 and section 5.5.2 we propose two detection schemes for

identifying these two types of attacks.

• Recent studies have shown that adversarial samples are much more sensitive to per-

turbations than normal samples. If we impose random perturbations on a normal and

an adversarial samples respectively, there is a significant difference between the ratio

of label change due to the perturbations. Thus, in section 5.5.1 we present a recent

work on detecting adversarial samples, where the authors determine if an input is a

normal sample or an adversarial one through mutation testing.

• Based on our observations, we notice that important features identified from a genuine

RNN-based model are significantly different from those identified from a maliciously

modified model created from the original model. Thus, in section 5.5.2 we design

a detection scheme, which compares the identified important features of a similar

ML system (e.g., a traditional random forest model) with those obtained using the

downloaded RNN-based ML system which may be maliciously modified. Significant

differences in these two sets of identified features suggest that the newly created RNN-

based ML system may contain malicious PLM. Our detection scheme can be easily

implemented to quickly identify any malicious RNN-based ML systems.

Moreover, we also propose a Static/Dynamic Quantization-based defense solution (SDQDS)

(in section 5.5.3), which uses quantized weights and does not require any modification to
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the training procedure and yet relatively effective in defending against these two types of

adversarial attacks.

Finally, in section 5.6, we conduct various experiments using both synthetic and real

healthcare datasets which contain patient records with many attributes to demonstrate that

these two types of attacks are effective against RNN-based healthcare machine learning

models. The evaluation results for our detect and defense solutions also show that they are

feasible and practical.

In summary, in this chapter, we make the following contributions:

• We present two potential attacks on a RNN-based ML system and validate the feasi-

bility of such attacks and the consequential damage they create.

• We design easily implemented low-cost detection and defense schemes to prevent such

adversarial attacks.

• We conduct extensive experiments using both synthetic and real-world datasets to

show the effectiveness of those attacks and robustness of our detection & defense

schemes.

5.2 Important Building Blocks

In this section, we introduce some fundamental concepts that used in our work.

5.2.1 ML System

Machine learning (ML) is the use of artificial intelligence to automate algorithms that

can learn without explicit instructions. Depending on the algorithms, objectives and their

purposes, ML systems can be categorized into three main categories: (a) supervised learning;

(b) unsupervised learning; (c) reinforcement learning. The first one is mainly used for

classification, where the network is trained with labeled dataset to learn some connections

between inputs and outputs. The second one is often used for feature extraction and network

pre-training, which is trained with unlabeled dataset. The last one can be viewed as the
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subfield of ML which explores techniques to improve planning and control policies based on

observations.

Figure 5.1: ML System

An end-to-end ML system often consists of a set of modules, where each one implements

different functionalities such as data collection, data processing (normalization), feature

selection, regression or classification (as shown in Fig 5.1). We primarily focus on primitive

learning models (PLMs) that implement feature extractors, due to their prevalent use and

reusable nature.

Once the data is collected and pre-processed, a ML model is chosen and trained. The

machine learning process consists of finding the relationship between the patterns and the

outcomes using solely the training examples, where the input data point (x, y) are samples

obtained by sampling from a fixed but unknown probability distribution over the space

Z=X × Y. Here, X is the space of feature values and Y is the space of labels (e.g., Y =

{0, 1} for classification or Y = R for regression).

A feature extractor implements a function g : X → V which extracts a subset of the

initial features from the input data, so that the desired task can be performed by using this

reduced representation instead of the complete initial data. The mapping from V to Y is

performed via a function f : V → Y associated with a loss function Lf , which captures the

error made by the prediction f(g(x)) when the true label is y.

5.2.2 PLMs Development Status

The national push for electronic health records (EHR) has resulted in an exponential surge

in volume, detail, and availability of digital health data, which offers an unprecedented

opportunity to infer richer, data-driven descriptions of health and illness. Clinicians are

collaborating with computer scientists to generate interesting ML systems to improve the

state of healthcare services towards the goal of personalized treatments.
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Thus, there has been a widespread use of ML systems in medical-diagnosis applications.

For example, Recurrent Neural Network (RNN) models [66, 123] recently proposed for the

healthcare domains have demonstrated significant prediction improvements over traditional

approach. RNN is a variant of neural networks which can be used to handle large sequential

data. It takes an input sequence (x1, x2, . . . , xt), produces a sequence (h1, h2, . . . , ht) of

hidden states and outputs a sequence (y1, y2, . . . , yt) in the following way: ht = σ(Wxxt +

Whht−1 + bh), yt = Wyht + by, where σ is the logistic sigmoid function, Wx,Wh,Wy are

weight matrices and bh, by are biases. RNNs also allow connections between hidden units

that form directed cycles. Such cycles allow the network to keep previous information

of hidden states as an internal memory. One example is the Long Short-Term Memory

(LSTM) architecture, which addresses the problem of learning long-term dependencies by

introducing a gated structure, which is able to learn long term dependencies.

Therefore, with a large collection of PLMs available for off-the-shelf use, developers can

download the PLMs and integrate them to form various ML systems for multiple classifi-

cation tasks. However, the downloaded PLMs may have some security risks. For example,

a ML classifier with malicious feature extractor, may assign a wrong class to a legitimate

health related input, or classify noisy input with confidence. A maliciously crafted unsu-

pervised feature extractor may produce a meaningless representation of the input, which

may largely affect the learning performance.

5.2.3 Attack Threats

Here, we assume there are two kinds of attacks: (i) the attacker generates adversarial sam-

ples based on their knowledge of the victim models and the inherent characteristics of the

original datasets; (ii) the attacker crafts a malicious feature extractor PLM by slightly mod-

ifying its genuine version. Thus, the system developers will be affected if they accidentally

download such malicious samples or module and integrate it with their classifiers to build

ML systems.
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(1) Adversarial Samples Attack

Recent studies have shown that adding small modifications to an input can fool state-of-

the-art deep classifiers, resulting in incorrect classification [147, 68, 125, 123, 40]. Their

algorithms perturb normal samples by a small amount such that such perturbations are not

noticeable but can cause mis-classifications by the learning systems.

Most studies of adversarial examples in the literature use the white-box assumption.

For example, Carlini et. al. [40] present a powerful C&W attack, where carefully crafted

perturbations are added to the legitimate input samples. While various techniques have been

proposed to generate adversarial samples of the white-box attack, researchers also explore

the black-box attack where adversaries do not know the model structures or parameters

which is a more realistic scenario. For example, one study proposed by Papernot et. al. in

[125] showed that it is possible to create adversarial samples that successfully reduce the

classification accuracy without knowing the model structure or parameters.

(2) Weights Adjustment Attack

We explore the range of attacker capabilities in machine learning systems either during

inference or training phases. The first type of capabilities allows attacks during inference

time, where exploratory attacks do not tamper with the targeted model but instead either

cause it to produce specifically targeted but wrong labels as outputs or simply use attacks to

collect information about the model characteristics so that they can build substitute models

without paying for the use of the real models. Such inference-time attacks can be classified

into either (a) white-box: the adversary has full knowledge of the model, including the

model architecture, parameters, and original training data; (b) black-box: attacks assume

no knowledge about the model. The second type of attack capabilities allow attacks during

the training phase. Attackers with such capabilities attempt to learn, influence or corrupt

the model itself during the training phase by either inserting adversarial inputs into the

existing training data or crafting a malicious feature extractor so that any ML-system

that incorporates such malicious feature extractor will produce wrong prediction results.

Typically, such attackers [170] will modify genuine PLMs and upload them to developer
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platforms such as github and attract others to download by making certain interesting

claims about their malicious PLMs e.g., they run faster.

5.2.4 Static/Dynamic Quantization-based Defense Solution

A lot of quantization based techniques have been proposed recently, where the original inten-

tion is to compress the neural networks. Broadly speaking, these techniques can be classified

into two types: deterministic (static) quantization [104, 70] and stochastic (dynamic) quan-

tization [174, 160, 21, 130]. In deterministic quantization, the weights are quantized into

some predefined codebook, where there is an one-to-one mapping between the quantized

value and the real value. For example, some commonly used codebooks are {1, 1}, {1, 0,

1} or power-of-two numbers, which provides binary network, ternary network and power-

of-two network separately. While in the dynamic quantization, the adaptive codebook and

quantized values are learned from the data, where the weights, activations or gradients are

discretely distributed. The quantized value is sampled from some discrete distributions. In

this subsection, we review different design choices for static/dynamic quantization, which

will be used in our work.

(1) Static Quantization

(A) Uniform Quantization:

Firstly we scale weights into a range ∈ [-1, 1], and then adopt the following k-bit fixed

quantization:

qk(x) = 2(
round[(2k − 1)(x+1

2 )]

2k − 1
− 1

2
), (5.1)

where rounding is possibly the simplest way to quantize real values. In this way, the

output tensors will only contain 2k discrete levels in the range of -1 to +1. For example,

when n=1 the output will be quantized to 2 discrete levels -1 and +1. However, this

method can be far from optimum when quantizing non-uniform data, which are typical

characteristics of trained weight and activation values.

(B) Threshold-based Non-uniform Quantization:
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In order to round off a floating-point number to the nearest fixed-point representation,

in [70] the authors proposed the following rounding scheme:

 bxc, if bxc ≤ x ≤ bxc+ ε
2 ,

bxc+ ε, if bxc+ ε
2 < x ≤ bxc+ ε

(5.2)

where ε is the smallest positive number that can be represented in this fixed-point

format. bxc is defined as the largest integer multiple of ε. For values that are beyond the

range of this fixed-point format, the authors normalized them to either the lower or the

upper bound of the fixed-point representation.

Challenges: while use a rounding function is an easy way to convert real values into

quantized values, the network performance may drop dramatically after each rounding op-

eration. It is necessary to keep the real values as reference during training which increases

the memory overhead. Meanwhile, since the parameter space is much smaller if we use

discrete values, it is harder for the training process to converge. Finally, rounding oper-

ation cannot exploit the structural information of the weights in the network, where the

activations, gradients and parameters have very different ranges and those ranges of the

gradients slowly diminish during training.

(2) Stochastic (Dynamic) Quantization

In the previous method, the thresholds between different quantization levels are fixed. Here,

we propose a dynamic activation quantization method in which the thresholds for different

discrete levels are tunable parameters in adversarial training. For n-bit quantization func-

tion, it has 2n output discrete levels and 2n − 1 tunable thresholds. Let m = 2n, then the

quantization will have m − 1 threshold values {t1, t2, . . . , tm/2, . . . }. For example, when n

= 1 and 2, the 1-bit and 2-bit dynamic quantizations are:

f(x) = 0.5× [sgn(x− t1)− sgn(t1 − x)], and (5.3)
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−1, if x < t1

t1, if t1 < x < t2

t3, if t2 < x < t3

+1, if x > t3,

(5.4)

which is more flexible and desirable than the previous approach.

(3) A Comparison of Two Quantization Methodologies

In order to achieve static quantization, the quantization codebook is predefined. Thus, how

the codebook is designed has a dramatic impact on the performance of the quantized net-

work. For example, a small codebook means that we can only search the parameters within

a limited space, which makes the optimization problem very hard. However, in adaptive

quantization, the codebook is learned from the data, where vector quantization and prob-

abilistic quantization are two possible methods to achieve adaptive codebook quantization.

In vector quantization, in order to learn the codebook, we must divide a large set of val-

ues into buckets, where each bucket is represented by its centroid point. In probabilistic

quantization, the codebook can be inferred from the posterior distributions of the weights.

5.3 Adversarial Samples Attack

5.3.1 Attack Overview

In the current big data era, more and more available healthcare data are invaluable resources

that carry important insights for the various aspects of care delivery. Data analytics tech-

nologies, such as data mining and machine learning, are important tools for digging those

in-sights out from the healthcare data. Thus, various attack models and algorithms have

been used to target classifiers, where they aim to find a perturbation δ to be added to a

(legitimate) input x, resulting in the adversarial example x′ = x+ δ. The perturbation δ is

chosen to be small enough so as to remain undetectable.

In our work, we present a recent attack mentioned in [143]. In their adversarial samples

generation process, their designed algorithm add perturbations to each medical record in
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each iteration. Then, they check if this adversarial sample can fool the classifier. If so, the

perturbation process stops. Otherwise, new perturbation will be added in the next iteration

and the process repeats until it exceeds a threshold. One can compute the perturbation

score for every successfully generated adversarial sample with its original sample.

5.3.2 Detailed Adversarial Samples Attack

Formally, given a well performed predictive model and a patient record x, their goal is to

find an adversarial medical record x′ of the same size, such that x′ is close to x but with a

different classification result from the given deep model. Let y be a source label currently

outputted by the predictive model, and the authors would like the predictive model to

classify x′ into an adversarial class label y′ 6= y, while minimizing the difference x− x′. As

in the mortality prediction example, if a patient is originally predicted to be alive, they

would like to find the minimal sparse perturbation x− x′ to make their model predict the

deceased label.

Inspired by the C & W attack [40], the authors adopt a similar loss function f() for

crafting adversarial examples [143]. Specifically, given an input x and its correct label

denoted by y, let x′ denote the adversarial example of x with a target class y′ 6= y. The

loss function for targeted attack is defined as

f(x′, y′) = min max{[Logit(x′)]y − [Logit(x′)]y′ ,−κ}+ λ||x′ − x||1, (5.5)

where Logit() is the logit layer (the layer prior to the softmax layer) representation of

x and κ ≥ 0 is a confidence parameter that controls the separation between y′ and the

next most likely prediction among all classes other than y′. Consequently, the loss function

in the Equation 5.5 aims to render an adversarial example x′ that will be classified as the

target class y′ while minimizing the distortion in the perturbation of x′ relative to x.

In addition, the authors also use the iterative shrinkage-thresholding algorithm (ISTA)

[27], which can be viewed as an additional shrinkage-thresholding step on each iteration.

Thus, for each record value, the algorithm shrinks a perturbation to 0 if the deviance to

original record is less than the soft threshold at each iteration. For example, the x′ is
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considered as a successful adversarial example of x if the model predicts its most likely

class to be the target class y′, where the perturbation is within the threshold. After each

iteration, they end up with a set of adversarial candidates. Then, they define a Perturbation

Distance Score (PDS) [143] to make perturbations comparable, which measures the quality

of a perturbation:

DMx =

√
max(| M x|)2 + β · || M x||0

d · t , (5.6)

where M x = x′−x, d is the number of medical features in the EHR system and t is the

available elapse time slots for the patients.

5.4 Weights Adjustment Attack

5.4.1 Attack Overview

With the ever-increasing system scale and complexity of ML models, modularization of ML

systems becomes popular. Many pre-trained PLMs are hosted on development platforms

such as Github [17], where developers can simply integrate them to create their own ML

systems. For example, the developers may download deep learning based PLMs from a third

part to improve the performance of their traditional learning models. However, such PLMs

are seldom checked for potential security risks and may be the modified versions uploaded

by attackers. Thus, after obtaining parameters of a pre-trained model from a third party,

the developers will be affected if they use the attacked model directly without fine-tuning

the model parameters over their own data.

The main goal of the attack is to force the RNN system to misclassify a group of inputs

{−→X1,
−→
X2, . . . } into a wrong output class (Y ∗). For example, the inputs can be the lab tests

of a Parkinson patient while the output can be a non-PD diagnosis.

A RNN-based ML system essentially models a composition function f×g : X → Y with

g and f being the feature extractor and the classifier. The adversary creates an adversarial

PLM ĝ such that f × ĝ classifies an input x∗ from a certain class y+ into a different class

y∗. To avoid detection, ĝ should be almost indistinguishable from its genuine counterpart g.

Specifically, g and ĝ should have proximate syntactic representation and they should behave
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the same with respect to inputs from other non-targeted classes, i.e. f × g(x) ≈ f × ĝ(x)

for x /∈ C(y+) where C(y) denotes inputs that belong to class y.

To make the attacks more practical, we assume that the attacker has full knowledge of

the victim model (e.g., its structure, parameters, training procedure) and strive to make his

malicious substitution almost indistinguishable from the genuine version so as to prevent

from possible detection.

Algorithm 2 Weights Adjustment Attack Algorithm

Input : data instances (
−→
X∗, Y ) ∈ D (training set), feature extractor PLM function g :

X → V, C(Y+) denotes training instances belonging to victim class Y+;
R are other training instances; genuine RNN module; learning rate η; thresholds Θ, ε
Output : attacked RNN PLMmodule, ĝ

while f(
−→
X∗) 6= Y ∗ do

compute ε ∼ N(0, σ)
. comment: compute additive stochastic noise, which is chosen from a standard normal
distribution

W ← recurrent weights
r+ = Θ % of {|∑

(
−→
X∗,Y+)∈C(Y+)

4w
(
−→
X∗,Y ∗)

|}w∈W
r− = (100−Θ) % of {∑

(
−→
X,Y )∈R | 4 w

(
−→
X,Y )
|}w∈W

for w ∈W do
if |∑

(
−→
X∗,Y+)∈C(Y+)

4w
(
−→
X∗,Y ∗)

| > r+ or
∑

(
−→
X,Y )∈R | 4 w

(
−→
X,Y )
| < r− then

update w∗ ← w − (η ∗ ε)
end if

end for
if no more weights need to be updated then

break;
end if

end while

Our main idea is to add random noise on the learning weights in a RNN system such that

it will generate wrong classification labels for a particular victim class. By adjusting the

weights of the important features, there is a high chance that some unnecessary features

will be treated as important in the feature selection step, which ruins the robustness of

learning-based classifiers. Our attack works as follows:

(1) Step1: We first identify a subset of features that are important for inferring a certain

class. Let us assume each patient’s data consists of a sequence (x1, x2, . . . , xt), where xt is

a vector of length k (representing k features) collected at time step t. Based on the input

data, we can compute the importance vector, f(xi) by using the following equation.
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f(xi) = (σ(
∑

(W1i � xi) + b1i), . . . , σ(
∑

(Wki � xi) + bki)) (5.7)

Where σ is the logistic sigmoid function, W1i, . . . ,Wki are weight matrices, b1i, . . . , bki are

biases, � is an element-wise multiplication, and
∑

is an operator that sums all elements of a

matrix. Each element, fi within f(xi) represents how important feature i is in determining

the label for this class.

(2) Step2: Based on the scores, we can identify a subset of important features. Since

there is a set of weights that correspond to the selected features, so we modify those weights

by adding stochastic noise with the aim of causing the classifier to output the wrong class

label for this victim class.

5.4.2 Detailed Weights Adjustment Attack

We first define the importance of a weight w with respect to a given input (
−→
X,Y ) as follows:

where σY is the probability that the input
−→
X belongs to the class Y .

4w
(
−→
X,Y )

=
∂σY
∂w
−

∑
Y ′ 6=Y

∂σY ′

∂w

Then, for a given layer of the feature extractor, we calculate the positive impact and

negative impact when adjusting the weight for each feature. Let Y+ be the victim class and

C(Y+) be the training instances belong to class Y+.

• Positive Impact: |∑
(
−→
X∗,Y+)∈C(Y+)

4w
(
−→
X∗,Y ∗)

|measures the influence of w with respect

to classify inputs
−→
X∗ = {−→X∗1 ,

−→
X∗2 , . . . } as Y ∗, where Y ∗ is a targeted class.

• Negative Impact:
∑

(
−→
X,Y )∈R | 4 w

(
−→
X,Y )
| quantifies w’s influence on the classification

task where R is the set including all instances that do not belong to Y+.

Since different clustering tasks may have different important features, so we enforce that

the adjustment of the target recurrent weights should have high positive impacts but low

negative impacts.

Next, we adjust the selected weights (i.e. weights with positive impacts higher than

Θ% of all the weights but their negative impacts are below the (100 − Θ)th percentile) by
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reducing their values by some stochastic noises. This process repeats until no more qualified

weights could be found or no more weights need to be further modified.

Our detailed attack algorithm is described in Algorithm 1.

5.5 Detection & Defense Mechanisms

In this section, we propose low-cost detection mechanisms to identify the presence of these

two types of attacks and also design a defense method to make the models more robust to

both types of attacks.

5.5.1 Detection Scheme for Adversarial Samples Attack

In this subsection, we present a modified detection scheme for identifying adversarial sam-

ples attack. First, we summarize the mutation-testing based detection scheme proposed in

[155] for identifying adversarial samples against image classifiers. Then, we present how we

modify their scheme to detect adversarial samples attack against RNN-based models. The

main idea of the mutation-testing based detection scheme is based on the observations that

adversarial samples are much more sensitive to perturbations than normal samples. If they

impose random perturbations on a normal and an adversarial samples respectively, there

would be a significant difference between the ratio of labels change due to the perturba-

tions. Thus, in their work the authors design an algorithm to determine if a given input is

a normal sample or an adversarial one through mutation testing (as shown in Fig 5.2).

Figure 5.2: Detection Mechanism for Adversarial Samples Attack

Instead of identifying adversarial samples against image classifiers, in our work we have

modified their scheme to detect adversarial samples attack against RNN-based models,

where can be described as follows:
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(1) Given a set of training data, the detection algorithm generates a set of K possible

mutations on every normal sample x, denoted as Xm(x) = {xm1, xm2, . . . , xmK}, where

each element xmi is obtained by imposing minor perturbations on the important features

of x.

(2) After that, for every mutation xmi ∈ Xm(x), the detection scheme obtains its output

label f(xmi) by feeding it into the learning model f(.). For most of the mutations in Xm(x),

f(xmi) should be f(x) because it is imposing small permutations, however, a label changing

may still occur. Thus, the sensitivity of a sample x to mutations can be computed as follows:

Stx =
|{xmi|xmi ∈ Xm(x)

∧
f(xmi) 6= f(x)}|

|Xm(x)| , (5.8)

where |Xm(x)| is the number of elements in a set Xm. Intuitively, Stx is the percentage

of mutations in Xm(x) that have a different label f(xmi) from f(x). Then, the detection

scheme computes the average sensitive value for all the normal inputs and set it as Stnor.

(3) Next, for a new given input xnew during operation, the detection scheme conducts

similar mutations on this input and compute its sensitive value denoted as Stxnew .

(4) Finally, the detection scheme measures a normalized distance (ND) between Stnor

and Stxnew (in Equation 5.9) to check if this input xnew is an adversarial sample or not.

ND =
Stxnew − Stnor

Stnor
> µ− 1, (5.9)

where µ is used to control the identification errors. Thus, if the normalized distance

(ND) is larger than (µ-1), then this input is determined to be an adversarial sample,

where we would raise an alarm and avoid making wrong decisions that could lead to severe

consequences.

5.5.2 Detection Scheme for Weights Adjustment Attack

In this subsection, we propose a simple detection solution that can infer if any downloaded

PLM has been modified, where we assume that the users have access to the training data.

Our main idea is based on the following observations: (i) While deep learning models

could provide better performance than the traditional learning models in predicting disease
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diagnosis or progression, there is a high probability that the important features they have

extracted are similar. (ii) The important features of a deep learning model before and after

attacks will be different.

Thus, we can compare the set of important features extracted using the downloaded

PLM with those that are extracted using traditional models (assuming that such features

have already been identified by health service providers who are currently using traditional

methods but interested in using a deep learning based PLM) to see how different they are.

if they are significantly different, then we know there is an attack.

Figure 5.3: Our Detection Mechanism for Weights Adjustment Attack

Our detection scheme works as follows:

(1) After obtaining the input data, our detection algorithm will compare the important

m features extracted by a downloaded RNN model with those extracted using a traditional

learning model (as shown in Fig 5.3). We assume that the publisher of the RNN healthcare

learning model also publishes an appropriate m value where the accuracy of an unattacked

RNN model is within Tr1% if one only uses the top m features versus the whole feature

sets.

(2) If the difference of extracted features of the two models is larger than a threshold

Tr2, then we declare that the downloaded RNN model is suspicious and should not be used.

Next, we describe in more details about how our detection scheme works by using a

RNN-based learning model in healthcare domain as an example.

(1) Let us assume that the input dataset D contains two types of data: (a) Static Data:

(i) long term data (personal profile, e.g., gender), (ii) short term data (lab test results); (b)

Elapsed Time: time intervals between two visits of a patient.

We assume that this dataset contains M patients and each patient has N static data
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(each has V features) and N elapse times. Thus, we first split the input Data D into N

subsets, denoted as {D1, . . . , DN}.

(2) For every subset Di, it contains patients’ static data and the correlated elapse time.

• D1: {{patient1, static− data1}, . . . , {patientM , static− data1}, T1}

• D2: {{patient1, static− data2}, . . . , {patientM , static− data2}, T2}, . . .

• DN : {{patient1, static− dataN}, . . . , {patientM , static− dataN}, TN}

(3) For every subset Di, we use existing feature selection methods (e.g., Logistic Regres-

sion (LR), Decision Tree (DT), Random Forest (RF)) to extract important features and

store as FDi = {FDi1, FDi2, . . . }.

(4) Based on the elapse time Ti of each dataset Di, we compute a score as
∑N

i=1
Sij
Ti

for

each feature Vj in {FD1, FD2, . . . , FDN}, where if feature Vj is shown in FDi, then Sij=1,

otherwise Sij=0.

(5) We select top m features (with highest scores) and store them as F1 = {V11, . . . , V1m},

where m is a value which the publisher of that downloaded PLM specific as discussed earlier.

(6) Next, using the same input dataset D, we extract important features (top m) using

the downloaded RNN model, and store them as F2 = {V21, V22, . . . , V2m}.

(7) We compare both F1 and F2 to check if such target model has already been attacked.

Specifically, we check if |F1∩F2|
|F1| ∗ 100 > Tr2. If it does, then we declare that the model has

been attacked.

In addition, if the users do not have access to the training data, then, we can increase

the diversity of a user’s test set by creating some synthetic test instances based on the

characteristics of the existing test sets. Next, we can compare the distribution of the

predicted results of the downloaded learning model with existing learning models. Since

the attack tries to mislead the predicted results of a particular victim class, the distribution

of the predicted outcomes between the downloaded learning model and existing learning

models will be different (i.e., less correct predictions for the victim class).
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5.5.3 Quantization-based Defense Solution

(1) Defense Overview

Our SDQDS utilizes static/dynamic quantization schemes to produce quantized deep learn-

ing models which are more robust against these two types of attacks. Our solution consists

of three parts: (i) feature weights partition, (ii) layer group-wise quantization and (iii) re-

training. The high-level idea of our weight quantization approach is to first group features

into different clusters. Then, we use the centroid of each cluster to generate representative

values and quantize the actual weights in each cluster into the corresponding representative

values.

Figure 5.4: SDQDS Overview

(2) Detailed Defense

In this part, we will describe the implementation of our defense mechanism in detail, which

is shown in Fig 5.4.

(A) Feature Weights Partition:

We adopt k-means clustering to identify the shared weights for each layer of a trained

network and quantize the weights into different values based on the centroids values of

different clusters. For example, we can partition n network parameters (e.g., weights)

W = {w1, w2, . . . , wn} into k disjoint clusters C = {C1, C2, . . . , Ck} (Ci is the centroid).

After clustering, each weight is assigned to a cluster index:

arg min
C1,C2,...,Ck

k∑
i=1

∑
w∈Ci

|w − ci|2, where ci =
1

Ci

∑
w∈Ci

w, (5.10)

For simplicity, we firstly consider the problem with k = 2. Suppose that α1 and α2
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are known in advance with α1 ≥ α2 ≥ 0, then the quantization codes are restricted to v =

{−α1−α2,−α1+α2, α1−α2, α1+α2}. Consequently, based on the distance we can partition

the weights into 4 intervals. And each interval corresponds to one particular quantization

level (shown in Fig 5.5). For the general k-bit quantization, suppose that {αi}ki=1 are known

and we have all possible codes in ascending order, i.e., v = {−∑k
i=1 αi, . . . ,

∑k
i=1 αi}. Simi-

larly, we can partition the weights into 2k intervals, in which the boundaries are determined

by the centers of two adjacent quantization levels. For example, if w < (vm/2 + vm/2+1)/2,

its feasible quantization level is then optimally restricted to v1:m/2, otherwise its feasible

quantization level becomes vm/2+1:m. By recursively partition the ordered quantization lev-

els, we can then efficiently determine the optimal quantization level for each weight by only

k comparisons.

Figure 5.5: An Example of Quantization Levels Partition

(B) Layer Group-wise Quantization:

Recent neural networks are getting deeper [145, 165], where different layers will have

different impacts on the final predictions. For example, some layers such as convolutional

layers may be more important than the others. Thus, in our work instead of quantizing

network parameters of all layers together we also consider to conduct different quantizations

on all individual layers (shown in Fig 5.6).

Figure 5.6: An Example of Layer Group-wise Quantization: (i) the purple and blue arrows

mean we conduct quantizations on all individual layers; (ii) on each layer we use different colors to

represent different quantized levels on the feature weights

(C) Re-training After Quantization:
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As quantized weights bring errors to the network, we need to retrain the model to recover

accuracy, where we fix the quantized weights and iteratively use our approach to quantize

the remaining weights until all the weights are quantized.

5.6 Performance Evaluation

In this section, we conduct experiments on synthetic and real-world healthcare datasets

to answer the following questions: (i) if the performance of a RNN-based ML system will

decrease when two described attacks have been launched; (ii) if our detection mechanism is

effective in identifying malicious model, and (iii) if our defense method is useful in preventing

such attacks. In the remainder of this section, we will describe the RNN-based model, the

datasets we use and our empirical results.

5.6.1 Experimental Settings

To evaluate the performance of our schemes, we conduct experimental evaluations on four

public medical datasets, namely, one synthetic diabetes datasets (large), two parkinson

datasets (small & large) and MIMIC-III dataset as shown in Table 5.1. We evaluate the

attacks, detection and defense mechanisms on a recently published RNN model: T-LSTM

[26].

(1) A RNN Model Description

A LSTM architecture (T-LSTM) proposed in [26] is used. This LSTM-based model is de-

signed to handle time irregularities in sequences. Their system contains two parts: (a) a

T-LSTM auto encoder, which is used to generate a representation for each patient based

on his/her medical records and elapse time intervals. Such T-LSTM auto-encoder has a

T-LSTM encoder and a T-LSTM decoder unit with different parameters, which are jointly

learned to minimize the reconstruction error. The proposed auto-encoder can capture the

long and the short term dependencies by incorporating the elapsed time into the system,

where the short-term memory is adjusted by the elapsed time weight to obtain the dis-

counted short-term memory; (b) The output from the hidden layer of the T-LSTM encoder
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Table 5.1: Datasets Description

Dataset Data Size # of Features # of Classes # of Elapse Time

SD 6730 36 2 4

PD 40 26 2 4

PPMI 643 306 2 25

PPMI 643 306 6 25

MIMIC-III 37559 19 2 48

MIMIC-III 37559 19 8 48

at the end of the sequence is used as a single representation of a patient for the subse-

quent patient clustering task. In addition, the T-LSTM was implemented in Tensorflow

[20], an open source software library for numerical computation using data flow graphs, and

mini-batch stochastic Adam optimizer.

(2) Datasets Description

We use four datasets in our experiments, which are described as follows:

• Synthetic Diabetes Dataset (large) (SD) [26]: In this dataset, there are 6730 patients

with an average of 4 admissions each. Feature of an admission of a patient is a vector

containing the diagnoses given in the corresponding admission and its feature size is 36.

Even though the dataset is artificially generated, it contains similar characteristics as

a real EHR data. Patients are categorized either into the no-diabetes or with diabetes

classes.

• Parkinson Dataset (small) (PD) [106]: This dataset is composed of a range of biomed-

ical voice measurements from 40 people, where 20 have Parkinson’s disease (PD) and

the rest are healthy people. Each column in the dataset is a particular voice measure,

and each row corresponds to one of the 195 voice recordings from these individuals.

The main aim of the data is to discriminate healthy people from those with PD,

according to “status” column which is set to 0 for healthy and 1 for PD.

• PPMI Dataset (large) [45]: This is the Parkinson’s Progression Markers Initiative

(PPMI) challenge dataset, which is provided to let clinical researchers identify biomark-

ers for predicting the progression of Parkinson’s disease. We pre-process this large
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dataset and retains only features that are observed in at least 400 patients’ records.

Subsequently, we only keep 643 patients whose primary diagnosis are either “Idio-

pathic PD” or “Non PD”.

We also select a total of 306 raw features, which consist of 7 categories: (a) mo-

tor symptoms/complications (MCs) (SPES/SCOPA sections Motor/Complications),

(b) cognitive functioning (SCOPACOG), (c) autonomic symptoms (SCOPA-AUT),

(d) psychotic symptoms (SCOPA-PC, items 15), (e) nighttime sleep problems and

excessive daytime sleepiness (SCOPASLEEP), (f) depressive symptoms [PROPARK:

Beck Depression Inventory (BDI); (g) ELEP: Hospital Anxiety and Depression Scale

(HADS).

We used the last three months health records for prediction. Prediction categories is

either 2 classes (PD and non-PD) or 6 classes based on the Hoehn and Yahr (NHY)

scale scores [77]. The NHY scale is a commonly used system describing how the

motor functions of PD patients deteriorate. The scores are ordered and discrete,

ranging from 0 to 5. Score 1.0 means that the PD is limited to one side of the body.

Other motor conditions such as tremor, rigidity, reduced arm swing, and slowness are

present only on one side. Score 2.0 refers to problems affecting both sides. The higher

the score, the more severe the condition is. Patients are classified into 6 classes based

on these scores.

• MIMIC-III Dataset (large) (MC3) [82]: This dataset was made available by Neh Is-

rael hospital and data from their critical care unit from 2005 to 2011. It contains

information about patient demographics, hourly vital sign measurements, laboratory

test results, procedures, medications, ICD-9 codes, care-giver notes and imaging re-

ports. In total, there were 58,976 unique admissions and 14,567 unique International

Statistical Classification of Diseases and Related Health Problems (ICD)-9 diagnostic

codes. Our experiment uses records from a collection of patients, which consist of 19

variables from 2 categories: vital sign measurements with 6 features and lab events

with 13 features. Vital signs include heart rate (HR), systolic blood pressure (SBP),

diastolic blood pressure (DBP), temperature (TEMP), respiratory rate (RR), and
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oxygen satu- ration (SPO2). Lab measurements include: Lactate, partial pressure of

carbon dioxide (PaCO2), PH, Albumin (Alb), HCO3, calcium (Ca), creatinine (Cre),

glucose (Glc), magnesium (Mg), potassium (K), sodium (Na), blood urea nitrogen

(BUN), and Platelet count.

Since MIMIC-III contains numerous missing values and outliers, so we use the pro-

cessed data mentioned in [143, 148], which contains 37,559 multivariate time series

with 19 variables across 48 time stamps. As to the class predictions, we conduct the

following two tasks: (i) In-hospital Mortality task is modeled as a binary classification

problem. (ii) Length of ICU Stays (LOS) task prediction remains an important task

for identifying high-cost hospital admissions in terms of staffing cost and resource

management. We formulated such task as a multiclass classification problem using

bins of lengths (1, 2), (3, 5), (5, 8), (8, 14), (14, 21), (21, 30), (30+, ) to reflect the

range of possible LOS values in terms of days.

(3) Experiments Overview

Our experiments consist of three parts: (i) before launching attacks, we first measure the

performance of the unattacked T-LSTM model, where the top m important features will be

selected and compared in our detection scheme; (ii) then, we launch two types of attacks as

we explained in section 5.3 & 5.4, where the goal is to evaluate their impacts on the target

model; (iii) Next, we evaluate our detection and defense mechanisms.

In our experiments, we train the model for 200 epochs and apply a learning rate of

0.005. Since the model with more LSTM layers becomes more complex which will in turn

affect the prediction results, thus we choose an appropriate number of layers based on the

datasets we use: (i) we select 2 LSTM layers for the small datasets (PPMI); (ii) 3 LSTM

layers for the large dataset (MIMIC-III). We also choose 512 hidden units for each layer.

All the experiments are performed on Ubuntu 14.04 with 4.0GHz, Intel Core i7 CPU, 16GB

Memory and Nvidia GTX 1080 Graphics Card.
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Table 5.2: Unattacked T-LSTM Model Evaluation

Dataset # of
Fea-
tures

# of
Classes

T-
LSTM

top3
fea-

tures

top5
fea-

tures

top10
fea-

tures

top15
fea-

tures

top20
features

SD 36 2 78.1% 72.6% 75.8%

PD 26 2 77.5% 70% 75%

PPMI 306 2 60.9% 37.5% 42.2% 48.4% 54.7% 57.9%

PPMI 306 6 43.8% 25% 28.1% 32.8% 35.9% 40.9%

MIMIC-III 19 2 87.3% 81.7% 84.6%

MIMIC-III 19 8 85.4% 79.1% 81.9%

5.6.2 Evaluation of Unattacked T-LSTM Model

Before launching the attacks, we conducted Exp1 to measure the performance of the

unattacked T-LSTM model, where we measure the performance by varying the number

of input features.

From the result (Table 5.2), we can see that in order to ensure the accuracy of the

unattacked model varies within (Tr1=3%) when only using the top m features, the m

values we need to set are as follows:

• we select m = 5 for SD, PD and MIMIC-III datasets because those datasets have

small number of features.

• we select m = 20 for the PPMI since such dataset has large number of features.

Table 5.3: Adversarial Samples Attack Evaluation for T-LSTM

Dataset # of
Features

# of Classes Accuracy of D1
(Without Attack)

Attack Success
Rate of D2

PPMI 306 6 43.8% 92%

MIMIC-III 19 2 87.3% 84%

MIMIC-III 19 8 85.4% 80%

5.6.3 Effectiveness of Two Types of Attacks

(1) Adversarial Samples Attack Evaluation

We have conducted Exp2 to measure the effectiveness of the adversarial samples attack

via using different datasets, namely (i) a small dataset (PPMI); and (ii) a large dataset

(MIMIC-III).
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Exp2: in this experiment, we first evaluate the prediction accuracy of the T-LSTM

model for the benign PPMI data with 6 classes (denoted as D1). Then, we launch the

adversarial samples attack by generating 200 adversarial samples (D2) that can force such

model to make wrong predictions for the target class: class1 for PPMI, and evaluate the

success rate of such attack. Next, we repeat the same process for the MIMIC-III dataset,

namely (i) MIMIC-III with 2 prediction classes (class0 is the target class); (ii) MIMIC-III

with 8 prediction classes, where class4 is the target class.

The experimental results are shown in Table 5.3. From the results, we can see that the

model can be easily affected by the adversarial samples attack since most of the adversarial

samples will force the model to make wrong predictions. For example, the attack success

rate of D2 is high for both datasets (92% for PPMI and 82% for MIMIC-III on the average).

Table 5.4: Weights Adjustment Attack Evaluation for T-LSTM

Dataset # of
Features

# of
Classes

Accuracy
(Without
Attack)

Accuracy (Attack
on Important
Features with

Θ = 70)

Accuracy (Attack
on Important
Features with

Θ = 80)

SD 36 2 78.1% 64.2% 66.9%

PD 26 2 77.5% 65% 67.5%

PPMI 306 2 60.9% 48.4% 51.6%

PPMI 306 6 43.8% 34.4% 35.9%

MIMIC-III 19 8 85.4% 76.5% 77.8%

(2) Weights Adjustment Attack Evaluation

We have conducted Exp3 to measure the effectiveness of the weights adjustment attack,

where we use both synthetic and real clinical data.

Exp3: in this experiment, we first evaluate the prediction accuracy of the T-LSTM model

using different datasets, namely (i) SD dataset with 2 classes; (ii) PD with 2 prediction

classes; (iii) PPMI with either 2 or 6 prediction classes; (iv) MIMIC-III with 8 prediction

classes. Then, we launch our attack by adjusting the training weights in the T-LSTM

network structure to force the model to make wrong prediction for the target class: (i)

class1 for SD; (ii) class1 for PD; (iii) class1 for PPMI; (iv) class4 for MIMIC-III. In addition,

we also vary the number of attacked features by setting Θ to either 70 or 80 (e.g., Θ=70

means 30% of the feature weights will be attacked) so that we can understand the attack’s
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impacts on the model’s predictions.

The experimental results are shown in Table 5.4. From the results, we can see that

adjusting weights of the features identified using Θ = 70% will largely decrease the clustering

accuracy by 11% on the average. Such reduction can be explained as follows: changing the

weights of the important features weakens the significance of those features, which in turn

causes the classifier to output wrong class labels. However, the accuracy will improve by

2.5% if we set Θ = 80%. It is because with Θ = 80% the attack adjusts fewer weights of

the model when comparing with Θ = 70%.

Figure 5.7: Confusion Matrix for Anxiety Disorders of T-LSTM

In addition, we find that adjusting the weights for the same features has different impact

on different clustering tasks. For example, in the PPMI dataset, if we adjust weights for

the anxiety factors in the T-LSTM system, then the accuracy of PD and NHY clustering

will reduce by 3% and 8% respectively (confusion matrix is shown in Fig 5.7). This can

be explained as follows: the Parkinson disease cannot be easily diagnosed based on the

anxiety factors. However, the anxiety disorders can be used to determine the severity of

PD patients. Thus, they have significant impacts on the NHY scale, which is commonly

used to describe how the motor functions of PD patients deteriorate.

5.6.4 Detection & Defense Solutions Evaluations

In this subsection, we conducted three experiments (Exp4 & Exp5 & Exp6), where (i) Exp4

is used to evaluate the effectiveness of the detection mechanism for the adversarial samples

attack, (ii) Exp5 is used to evaluate the effectiveness of the detection mechanism for the

weights adjustment attack, and (iii) Exp6 is conducted to measure our defense mechanism.
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(1) Evaluations of Adversarial Samples Attack Detection Scheme

We have conducted Exp4 to measure the effectiveness of the detection scheme for the

adversarial samples attack, where we use MIMIC-III dataset with 8 class labels.

Exp4: in this experiment, we conduct two types of mutations: (i) first type of mutations

operate on all features, (ii) 2nd type of mutations operate only on important features. Then,

for each type of mutations we conduct K (K = 200, 1000) mutations on every sample in the

training set and compute the average sensitive values denoted as Stnor1 (Type 1) and Stnor2

(Type 2). Next, we launch the adversarial samples attack to generate 200 adversarial sam-

ples that can force the victim model to make wrong predictions for the target class (class4

for MIMIC-III). We also repeat the process to generate two types of mutations for each

adversarial sample and compute the sensitive values denoted as Stadv1 (Type 1)and Stadv2

(Type 2). In addition, we select the threshold µ to control the identification errors, which is

computed based on the average sensitive value (Stnor) and the standard deviation (stdnor)

of the normal training samples, denoted as µ = (Stnor+λ∗stdnor)
Stnor

, where we set (i) λ = 1, (ii)

λ = 1.5 and (iii) λ = 2 in the experiment. Finally, we compute the normalized distances

(mentioned in section 5.5.1) of (i) Stadv1 and Stnor1, (ii) Stadv2 and Stnor2 respectively to

determine if this input is an adversarial sample.

Table 5.5: Detection Method Evaluation for Adversarial Samples Attack for T-LSTM

Dataset # of
Classes

Detection
Method

# of
Muta-
tions

Identification

Rate (λ = 1)

Identification

Rate

(λ = 1.5)

Identification

Rate (λ = 2)

MIMIC-III 8 all
features

200 43% 42.5% 42%

MIMIC-III 8 important
features

200 53% 53% 51.5%

MIMIC-III 8 all
features

1000 52% 51.5% 49.5%

MIMIC-III 8 important
features

1000 60.5% 60.5% 59.5%

The results are shown in Table 5.5. From the results, we can see that such detection

method works for the adversarial samples attack, where it can achieve an average detection

rate of 57%. We also find that varying the number of mutations and µ value will affect the
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final results, where the performance will be improved if we set λ = 1 or λ = 1.5 with 1000

mutations. Thus, in order to detect a strong attack (i.e., distance between Stadv and Stnor

is small), we would need to select an optimal µ value, and evaluate more mutations to reach

a conclusion.

In addition, instead of only selecting one µ value for all classes, we also conduct sensi-

tivity analysis to generate the µ value for each class, which can be used as the threshold to

identify the adversarial samples. For example, for MIMIC-III dataset by using a µ value of

class3 or class4 in the final comparison process, the performance of this detection method

can be improved by 4% or 9% on average respectively. Moreover, we find that conduct mu-

tations on important features can have better performance than on all features. It is because

the sensitive values of normal samples (Stnor) are relatively stable for a given model but

the values of adversarial samples (Stadv) are more sensitive to mutations on the important

features. Thus, adding mutations on those features would increase the distance between

Stadv and Stnor, which makes it easier for the algorithm to detect adversarial samples.

(2) Evaluations of Weights Adjustment Attack Detection Scheme

Based on the input data size, we use two traditional feature selection techniques to assess

which features are more helpful in constructing the learning models.

• Logistic Regression (LR) [63]: this uses maximum-likelihood estimation to compute

the coefficients fro all features, which can be used to rank them based on their relative

importance.

• Random Forest (RF) [97]: this is an ensemble classifier based on randomized decision

trees and provides different feature important measures, which can be visualized by the

Gini index scores [137, 71]. This feature importance score provides a relative ranking

of the spectral features and can be used as a general indicator of feature relevance.

Here, we run random forest classifier on all features and select useful features based

on their Gini index scores.

From our previous data mining work [128], we find that logistic regression (LR) has

good performance in identifying important features when the feature size is small (fewer
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Table 5.6: Detection Evaluation for Weights Adjustment Attack using Logistic Regression

Dataset # of
Features

# of
Classes

top5 features (LR) top5 features
(Attacked T-LSTM)

SD 36 2 32, 10, 21, 7, 33 5, 17, 18, 22, 33

PD 26 2 11, 13, 20, 21, 27 3, 8, 10, 19, 21

MIMIC-III 19 8 2, 4, 8, 11, 15 1, 6, 10, 15, 17

than 100). But for a large feature size, it is better to use random forest (RF) feature

extractor. Thus, we conduct Exp5 where (i) we use SD, PD, MIMIC-III and use logistic

regression (LR) to extract important features, and (ii) we use PPMI dataset which is larger

and hence we use the random forest (RF) method to extract important features.

Exp5: in this experiment, we use LR to select important features and stored the ex-

tracted top m features as F1 from the input data. We also use the downloaded RNN learning

model to extract top m important features (F2). Then, we compare the extract features

F1 and F2 to check if the downloaded learning model has been attacked. Next, we use the

same method for the PPMI dataset and use RF to extract important features.

Table 5.7: Detection Evaluation for Weights Adjustment Attack using Random Forest

Dataset # of
Fea-
tures

# of
Classes

top20 features (RF) top20 features (Attacked
T-LSTM)

PPMI 306 2 184, 143, 156, 88, 62, 187,
58, 52, 234, 150, 141, 163,
178, 192, 203, 153, 174,

198, 213, 221

143, 171, 154, 146, 62, 88,
159, 291, 152, 233, 112,

132, 183, 194, 205, 49, 28,
162, 240, 283

PPMI 306 6 184, 182, 62, 187, 297,
133, 145, 49, 65, 269, 88,
213, 154, 53, 150, 171,

176, 183, 192, 204

143, 182, 171, 139, 269,
29, 62, 224, 151, 140, 292,

105, 239, 150, 2, 9, 65,
112, 185, 205

The results of the top m features before and after an attack has been launched are shown

in Table 5.6 and Table 5.7. By comparing the extracted features in Table 5.6 and Table 5.7,

we find that the top m features extracted by existing traditional feature extractor are

largely different from those extracted by the attacked RNN model, where the overlap of two

feature sets (Tr2) is less than 30%. For example, in the PPMI dataset, the top20 features

extracted by RF for NHY clustering contain “Anxiety” and “Motor” factors. Whereas,

the top20 features extracted by the attacked T-LSTM model for NHY clustering mainly

contain “Sleep”, “Cognitive” and “Depression” factors. Therefore, by selecting appropriate
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threshold values (e.g., Tr2), our detection method is effective in detecting the weights

adjustment attack.

(3) SDQDS Evaluation

In order to illustrate the effectiveness of our defense mechanism, we conduct Exp6 on the

PPMI (small) and MIMIC-III (large) datasets, where (i) we use static quantization on each

LSTM layer, and (ii) we replace the static quantization with dynamically quantized levels

for different feature weights on different LSTM layers.

Exp6: in this experiment, we first use static quantization on each LSTM layer, where (i)

for PPMI dataset, we use a 16-bit static quantization on the 1st LSTM layer and a 12-bit or

8-bit static quantization on the 2nd LSTM layer; (ii) for MIMIC-III dataset, we use 16-bit

quantization on the 1st LSTM layer, 12-bit quantization on the 2nd LSTM layer and 12-bit

or 8-bit static quantization on the 3rd layer. Then, instead of using static quantization, we

also apply dynamic quantization in two ways (i) layer-based dynamic quantization, where

we separate the features into 7 clusters and 2 clusters for PPMI and MIMIC-III dataset

respectively; (ii) feature-based dynamic quantization. Finally, we measure the performance

for both benign (D1) and adversarial data (D2) (discussed in Exp2), where we measure the

prediction accuracy for D1 and attack success rate for D2.

Table 5.8a: Impact of SDQDS on Accuracy Without Attack (PPMI)

Defense Method Dataset # of
Fea-
tures

# of
Classes

Accuracy
(Without
Defense)

Accuracy
(16, 12)

Accuracy
(16, 8)

Static PPMI (D1) 306 6 43.8% 42.2% 39.1%

Dynamic (layers) PPMI (D1) 306 6 43.8% 42.2% 40.6%

Dynamic (features) PPMI (D1) 306 6 43.8% 42.2% 40.6%

Table 5.8b: Impact of SDQDS on Adversary Samples Attack (PPMI)

Defense
Method

Dataset # of
Features

# of
Classes

Attack Success

Rate (Without

Defense)

Attack

Success

Rate (16,

12)

Attack

Success

Rate (16,

8)

Static PPMI (D2) 306 6 92% 62% 29%

Dynamic
(layers)

PPMI (D2) 306 6 92% 56% 25%

Dynamic
(features)

PPMI (D2) 306 6 92% 48% 20%
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Table 5.9a: Impact of SDQDS on Accuracy Without Attack (MIMIC-III binary-class)

Defense
Method

Dataset # of
Fea-
tures

# of
Classes

Accuracy
(Without
Defense)

Accuracy
(16, 12, 12)

Accuracy
(16, 12, 8)

Static MIMIC-III
(D1)

19 2 87.3% 83.2% 80.5%

Dynamic
(layers)

MIMIC-III
(D1)

19 2 87.3% 83.8% 81.7%

Dynamic
(features)

MIMIC-III
(D1)

19 2 87.3% 84.4% 82.6%

Table 5.9b: Impact of SDQDS on Adversary Samples Attack (MIMIC-III binary-class)

Defense
Method

Dataset # of
Fea-
tures

# of
Classes

Attack

Success Rate

(Without

Defense)

Attack

Success

Rate (16,

12, 12)

Attack

Success

Rate (16,

12, 8)

Static MIMIC-III
(D2)

19 2 84% 54% 42%

Dynamic
(layers)

MIMIC-III
(D2)

19 2 84% 45% 36%

Dynamic
(features)

MIMIC-III
(D2)

19 2 84% 41% 29%

The results are shown in Table 5.8a, Table 5.8b, Table 5.9a, Table 5.9b, Table 5.10a

and Table 5.10b. From the results, we can see that while converting a deep network into

a low precision network essentially adds quantization noise into the model, which degrades

the performance of the benign inputs (D1), such defense solution works for the adversarial

samples attack, where the success rate of the adversarial samples (D2) has largely decreased.

Table 5.10a: Impact of SDQDS on Accuracy Without Attack (MIMIC-III multi-class)

Defense
Method

Dataset # of
Fea-
tures

# of
Classes

Accuracy
(Without
Defense)

Accuracy
(16, 12, 12)

Accuracy
(16, 12, 8)

Static MIMIC-III
(D1)

19 8 85.4% 80.2% 76.8%

Dynamic
(layers)

MIMIC-III
(D1)

19 8 85.4% 81.5% 78.9%

Dynamic
(features)

MIMIC-III
(D1)

19 8 85.4% 82.3% 79.6%

Meanwhile, by comparing the results in Table 5.8a, Table 5.8b, Table 5.9a, Table 5.9b,

Table 5.10a and Table 5.10b, it seems that dynamic quantization performs better than the

static quantization. It is because in the dynamic quantization, we choose the dynamic
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Table 5.10b: Impact of SDQDS on Adversary Samples Attack (MIMIC-III multi-class)

Defense
Method

Dataset # of
Fea-
tures

# of
Classes

Attack

Success Rate

(Without

Defense)

Attack

Success

Rate (16,

12, 12)

Attack

Success

Rate (16,

12, 8)

Static MIMIC-III
(D2)

19 8 80% 56% 45%

Dynamic
(layers)

MIMIC-III
(D2)

19 8 80% 49% 38%

Dynamic
(features)

MIMIC-III
(D2)

19 8 80% 44% 32%

quantization levels based on the information contained in the trained network, where the

shared weights for each layer are quantized based on the centroids values of different feature

weights clusters.

In addition, since different LSTM layers have different impacts on the final predictions

[118], so in the dynamic quantization we conduct different quantizations on all individual

layers. For example, since the last layer is more important than the other layers on the final

outputs so we conduct lower bit quantization on this layer to reduce the attack success rate

of adversarial samples and apply higher bit quantization on other layers to maintain the

accuracy of the benign inputs. Thus, according to the trade-off between the performance

of the benign inputs and the success rate of the adversarial samples, we find that (16, 12)-

bit and (16, 12, 12)-bit quantization methods are best choices for PPMI and MIMIC-III

datasets.

Moreover, we also conduct our defense solution (SDQDS) on the weights adjustment

attack (Θ = 70%), where the result is shown in Table 5.11. Recall that without the

attack, the accuracy will reduce when we apply the quantization-based defense solution on

the original model (as shown in Table 5.8a, Table 5.9a and Table 5.10a). The result in

Table 5.11 shows that our defense solution (SDQDS) also works for the weights adjustment

attack, where the performance will improve by at least 2% and 2.9% at most when such

defense solution has been applied.
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Table 5.11: Impact of SDQDS on Weights Adjustment Attack (MIMIC-III multi-class)

Defense
Method

Dataset # of
Fea-
tures

# of
Classes

Accuracy
(Attack with

Θ = 70)

Accuracy
(16,12,12)

Accuracy
(16,12,8)

Dynamic
(layers)

MIMIC-III 19 8 76.5% 78.5% 77.3%

Dynamic
(features)

MIMIC-III 19 8 76.5% 79.4% 78.1%

5.7 Discussion

In this section, we first discuss the limitation of our quantization based defense solution.

Then, we discuss some existing defense mechanisms and check if they are effective in de-

fending two types of attacks that we have investigated. Last but not least, we also describe

a possible end-to-end training strategy to prevent the weights adjustment attack.

5.7.1 Limitations of Quantization based Defense Solution

Since various LSTM-based models are created for different domains e.g., natural language

processing, speech recognition, etc, a more generic quantization method that is applicable

to all LSTM-based models needs to be designed.

While quantization based defense method is simple, there are some limitations. For

example, as shown from our work, we need to carefully decide how many bits of quantization

we want to use for different layers of the LSTM model in different experiments. This is rather

time-consuming. It will be useful for future work to design an algorithm which automatically

figures out such values. Furthermore, even though quantization-based solution reduces the

attack success rate of adversarial samples, the reduction is less than ideal. Again, future

work should focus on coming up with a defense solution that can drastically reduce the

attack success rate to zero.

5.7.2 Defense Mechanisms for Adversarial Samples Attack

Here, we discuss if several existing defense mechanisms designed for CNN models can be

effective in defending against adversarial attacks on LSTM models.
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(1) Removing Unnecessary Features

The first defense is to remove unnecessary features as the authors in [157] have shown that

including unnecessary features ruin the strong-robustness of learning-based classifiers by

allowing attackers to perturb the inputs slightly to cause the model to fail. However, it

is hard to use this defense method since based on our work, we find that a trained model

using top m (m=5, 20) features is still subjected to these two types of attacks.

(2) Random Nullification of Features

The second defense introduced in [156] is to randomly nullify features within samples during

training to produce a more resilient CNN model which prevents attackers from constructing

adversarial examples. We have tried this method and also found it to be ineffective in

defending against the two types of attacks against the LSTM model we discussed here.

(3) Defensive Distillation

The third defense [126] trains adversary resistant neural networks using a variant of the

distillation method. This has the desirable effect of learning a smoother network, which

makes it hard for attackers to generate adversarial examples. However, defensive distilla-

tion solution requires much more additional computations during the training process. In

addition, it has been shown in a recent work [38] that models generated using the defensive

distillation technique is still vulnerable to attacks.

5.7.3 Defense Mechanisms for Weights Adjustment Attack

(1) Existing Defense Methods

There are a few mitigation schemes we can explore for the weights adjustment attack. For

PLMs contributed by reputable sources e.g., Google, one can use digital signature created

by contributors which can be verified by PLM users. However, the efficiency of signature

generation and verification needs to be explored for there are RNN models which comprise

tens of millions of parameters. In addition, for PLMs contributed by untrusted sources, as

suggested in [170], users can perform outlier detection using the training set. If a feature
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extractor PLM generates bigger variations in feature vectors belonging to a group of similar

inputs, then this PLM warrants further investigation.

(2) An End-to-End Training Strategy

Table 5.12: End-To-End Defense Method Against Weights Adjustment Attack for
T-LSTM

Dataset # of
Fea-
tures

# of
Classes

Accuracy
(Without
Attack)

Accuracy (Attack on
Important Features

with Θ = 70)

Accuracy (Attack on
Important Features

with Θ = 80)

SD 36 2 78.1% 73.7% 74.5%

PD 26 2 77.5% 72.5% 75%

PPMI 306 2 60.9% 56.3% 57.8%

PPMI 306 6 43.8% 39.1% 40.6%

Since the T-LSTM model trains the representations and the classifier separately, so a

possible defense solution that can construct a more robust model is to train the classifica-

tion task end to end by including an extra component to the loss function which measures

the distance between a victim class and a target class. Our preliminary result in Table 5.12

suggests that such a strategy makes it hard for an adversary to produce a malicious PLM

by merely adjusting the weights of important features, which can prevent the weights ad-

justment attack from succeeding. However, this method is not general enough to defense

against the weights adjustment attack for all RNN-based models.

5.8 Summary

Identifying the security and privacy risks of machine learning models is an active research

area. In this chapter, we have presented two potential attacks: (i) adversarial samples

attack, (ii) a new weight adjustment (PLMs based) attack approach, which can force a

RNN-based model to make wrong predictions. We also design low-cost detection and defense

mechanisms to prevent such adversarial attacks. Finally, we conduct extensive experiments

using both synthetic and real-world datasets to validate the feasibility and practicality of

our proposed schemes.
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Chapter 6

Conclusions and Discussions

In this chapter, we summarize our research findings and discuss future research directions.

6.1 Summary

Nowadays, cloud has become a popular platform for data storage and processing. With

the availability of cloud resources, many organizations have outsourced their data into

the cloud. Healthcare companies have followed the same trends. For example, Personal

Health Records (PHR) services allow patients to create, manage, and control their data

in a centralized place through the web, which has made the storage, retrieval, and sharing

of the medical information more efficient. Furthermore, affordable wearables and powerful

smartphones with embedded sensors have allowed users’ health status to be monitored and

useful sensor data to be uploaded to the cloud easily. Thus, with this exponential growth

of the stored large scale data and the growing need for personalized care, researchers are

keen on developing data mining methodologies to identify critical factors which affect the

prediction results and use such information to aid the healthcare professionals in making

better treatment decisions.

While remarkable progresses have been made in the healthcare domain, many challenges

and open questions remain. The first obstacle is that in order to prevent information leakage,

sensitive medical data needs to be encrypted before outsourcing to the cloud, which make

the effective data utilization becomes a big challenge. The second challenge is that unlike
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other data sources, medical data is highly ambiguous and noise, which make it difficult to

generate predictive clinical models for real-world applications. The third obstacle is that it

is hard to gather a large collection of high quality clinical data since institutions or hospitals

may not be interested in sharing their useful data and healthcare related information also

various from different data sources. Last but not least, most machine learning models only

provide predictions without explanations, which prevent medical personnel and patients

from adopting such healthcare learning systems. Finally, despite the efficiency of machine

learning systems and their outstanding prediction performance, it is still a risk to reuse pre-

trained models since most machine learning models that are contributed and maintained

by third parties lack proper checking to ensure that they are robust to various adversarial

attacks.

In this thesis, we address those challenges by designing an accurate and secure per-

sonalized cloud-assisted healthcare system, which allows patients to conduct searches for

disease diagnosis based on their own personalized profiles. In terms of methodologies, the

summaries of this thesis can be described as follows:

• In Chapter2, we have proposed a Privacy-Preserving Disease Treatment, Complication

Prediction Scheme (PDTCPS), which allows users to conduct privacy-aware searches

for health related questions based on their individual profiles and lab tests results.

Our design also allows healthcare providers and the public cloud to collectively gen-

erate aggregated training models to diagnose diseases, predict complications and offer

possible treatment options. In addition, to enrich search functionality and protect

the clients’ privacy, we also design an encrypte index tree, which can support fuzzy

keyword search and query unlinkability. Moreover, PDTCPS also hides access pat-

terns and hence addresses the security threat via exposing access patterns in existing

searchable encryption schemes.

• In Chapter3, we have proposed useful learning models for Amyotrophic Lateral Scle-

rosis (ALS), Right Heart Catheterization (RHC) and Depression Disorder Relapse

(STAR*D) predictions, which can be used to aid efficient clinical care. We also de-

sign an incentive mechanism (IHESS) to encourage participants to share their more
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truthful and high quality medical data so that aggregated training models can yield

high accuracy.

• In Chapter4, we first design a medical knowledge extraction framework to collect

useful data from multiple sources to produce an aggregated dataset, which can be

used to generate comprehensive medical diagnosis models. Then, we propose a deep

learning based medical diagnosis system (DL-MDS), which allows authorized users to

conduct searches for medical diagnosis based on their personalized queries.

• In Chapter5, we have presented two potential attacks: (i) an adversarial samples

attack, (ii) a new weights adjustment attack approach, which can force a RNN-based

learning model to make wrong predictions. We also propose low-cost detection and

defense mechanisms to defend against such adversarial attacks.

For all the schemes we have designed above, we conduct extensive experiments using

both synthetic and real-world datasets to validate the feasibility and practicality of our

proposed methods.

6.2 Future Work

Based on this thesis, there are many possible extensions of the current approaches. In this

section, we suggest a few future research directions.

6.2.1 Multi-Dimensional Range Search over Encrypted Cloud Data

Since real-world datasets are often multi-dimensional, so in order to enable different search

functions over encrypted data, many Searchable Encryption (SE) schemes have been pro-

posed. Although most of the existing schemes [34, 85, 102, 136, 144] can support single-

dimensional and multi-dimensional range queries, they need a lot of search time with regard

to the total number of data records and may leak privacy information, which are not prac-

tical in the real-world. Therefore, we would like to enhance our schemes to support more

complex query types (e.g., range queries), while preserving the privacy of the query key-

words. For example, a medical researcher may want to find the number of diabetic patients
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who have taken a specific drug for a long time, and yet still suffer a high blood sugar level,

by submitting a query like “(50<age<80) AND (sex=“female”) AND (illness=“diabetes”)

AND (drug=“humira”) AND (duration>5 years) AND (blood-sugar>7%)”. We believe

this will be an important step forward to make searchable encryption practical and scalable

on large datasets in a real-world cloud setting.

6.2.2 Diseases Predictions based on Multimodal Data

In the era of information explosion, data from multiple sources are becoming increasingly

available. Each of these heterogeneous data sources (image features, personal profiles, lab

tests data) is likely to contain a different perspective on the disease risk of a patient. Thus, a

combination of the data from these independent sources can provide a more comprehensive

and holistic assessment of the diseases. Meanwhile, integration of different data sources can

also help in early diagnosis since some of the early symptoms of the diseases may appear

in one data source but not the other. Consequently, using just a single data source may

limit the ability for early diagnosis. Since some diseases (e.g., cancer) cannot be diagnosed

accurately only based on symptoms and risk factors, so we would like to extract information

from biological sources (i.e., lab tests data) and transform those non-numeric information

into numerical ones and evaluate if they can be useful features for predictions. For example

the values “Limb” and “Bulbar” in the “Onset-site” field of the ALS disease could be

converted into “0” and “1” respectively. In addition, we can also improve our design by

combining multiple types of encrypted health data. For example, we may enhance our

scheme to deal with encrypted image features so that we can also do disease diagnosis via

encrypted MRI images.

6.2.3 Robust end-to-end Deep Learning based Aggregated Systems

Although a machine learning-based predictive model (mentioned in Chapter4) generated

using the aggregated dataset could provide outstanding performance for clinical care, im-

provements can be made as follows:

• Instead of merely using the traditional learning methods (e.g., Logistic Regression,
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Random Forest) to generate disease diagnose modules, we can use deep learning tech-

niques (e.g., Recurrent Neural Network) to create multiclass diagnostic modules which

use aggregated information gleaned from heterogeneous medical data sources.

• In order to make our system more robust and efficient, we want to generate an aggre-

gated learning model by combing both diagnostic and query process modules, which

can not only improve the accuracy of the prediction results but also the efficiency of

the system.

In addition, instead of merely considering the two adversarial attacks (mentioned in

Chapter5), we also want to evaluate the feasibility of other existing attacks [37, 72, 108].

For example, an adaptive adversary is an attacker that is aware of the defense methods

used in the models, and can adapt attacks accordingly. Thus, in order to prevent from such

defense-aware attacks, we want to enhance our detection & defense mechanisms (mentioned

in Chapter5) to raise the bars for adversaries to launch successful attacks. Defensive strate-

gies should be able to adapt themselves by learning from previous attacks and estimating

possible behaviors of adversaries to minimize the expected loss. For example, we can use

a large number of adversarial examples to train a detector to identify unknown adversarial

examples, where such “detector” is trained on the binary classification task of distinguishing

benign samples from adversarial perturbations. In addition, we can also design an algorithm

to automatically determine (i) detection thresholds for detecting adversarial samples and

weight-based attacks; (ii) the optimal bits to quantize learning models for defending against

adversarial attacks.
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